Glaciers on the Tibetan Plateau play an important role in the local hydrological cycle. However, there are only few studies on groundwater in the alpine basins in the Tibetan Plateau which considered the effects of glaciers. Glaciers are extensively distributed in the Dongkemadi River Basin, which is a representative alpine basin in the Yangtze River source region. This study focuses on building a numerical groundwater flow model with glaciations using HydroGeoSphere (HGS) to simulate subglacial meltwater recharge to groundwater in the Dongkemadi River Basin in response to future climate changes. Effects of hydraulic conductivity, precipitation, and temperature on subglacial meltwater recharge to groundwater were discussed. Glacier changes in the future 50 years were predicted under different climate change scenarios. Results show that: (1) the average thickness of the glacier will change significantly; (2) the simulated rate of annual mean subglacial meltwater recharge to groundwater is 4.58 mm, which accounts for 6.33% of total groundwater recharge; and (3) hydraulic conductivity has the largest influence on subglacial meltwater recharge to groundwater, followed by temperature and precipitation. Results of this study are also important to sustainable water resource usage in the Yangtze River source region. 相似文献
In the late Miocene, giant ancient pockmarks, which are fairly rare globally, developed in the Qiongdongnan Basin. In this paper, to determine the sedimentary characteristics and genetic mechanism of these giant ancient pockmarks in the Yinggehai Formation of the Qiongdongnan Basin, based on high-resolution 3D seismic data and multiattribute fusion technologies, we analyzed the planar distribution and seismic facies of the ancient pockmarks and compared the characteristics of the ancient pockmar... 相似文献
Researchers utilize information from the geoscience literature to deduce the regional or global geological evolution. Traditionally this process has relied on the labor of researchers. As the number of papers continues to increase, acquiring domain-specific knowledge becomes a heavy burden. Knowledge Graph (KG) is proposed as a new knowledge representation technology to change this situation. However, the super relation is not considered in the previous KG, which bridges the geological phenomenon (fact) and its precondition (condition). For instance, in the statement (“the late Archean was a crucial transition period in the history of global geodynamics”), the condition statement (“crucial transition for global geodynamics”) works as the complementary fact statement (“the late Archean was a crucial transition period”), which defines the scale of crucial transition accurately in the late Archean. In this study, fact-condition statement extraction is introduced to construct a geological knowledge graph. A rule-based multi-input multi-output model (R-MIMO) is proposed for information extraction. In the R-MIMO, fact-condition statements and their super relation are considered and extracted for the first time. To verify its performances, a GeothCF dataset with 1455 fact tuples and 789 condition tuples is constructed. In experiments, the R-MIMO model achieves the best performance by using BERT as encoder and LSTM-d as decoder, achieving F1 80.24% in tuple extraction and F1 70.03% in tag prediction task. Furthermore, the geothermic KG with super relation is automatically constructed for the first time by trained R-MIMO, which can provide structured data for further geothermic research. 相似文献
Common carp (Cyprinus carpio L.) exhibits significant morphological variability in the shape and size of the caudal fin. In this study, we used 190 progeny from two F1 parents to identify and map quantitative trait loci (QTLs) that influence caudal fin length (CFL) and the ratio (RCS) between caudal fin length and standard length (SL) based on a microsatellite genetic map of common carp. A total of 15 QTLs were detected in seven different linkage groups. One significant and eight suggestive QTLs affecting CFL were identified on LG8, LG14, LG29, LG32 and LG44, which explained 8.0%–22.1% of the phenotypic variation; six suggestive QTLs affecting RCS were detected on LG8, LG32, LG46 and LG48, which explained 7.0%–15.4% of the phenotypic variation. The QTLs for caudal fin length detected in this study may serve as a starting point for identification of genes involved in caudal fin development in common carp. 相似文献
The transfer and evolution of stress among rock blocks directly change the void ratios of crushed rock masses and affect the flow of methane in coal mine gobs. In this study, a Lagrange framework and a discrete element method, along with the soft-sphere model and EDEM numerical software, were used. The compaction processes of rock blocks with diameters of 0.6, 0.8, and 1.0 m were simulated with the degrees of compression set at 0%, 5%, 10%, 15%, 20%, and 25%. This study examines the influence of stress on void ratios of compacted crushed rock masses in coal mine gobs. The results showed that stress was mainly transmitted downward through strong force chains. As the degree of compression increased, the strong force chains extended downward, which resulted in the stress at the upper rock mass to become significantly higher than that at the lower rock mass. It was determined that under different degrees of compression, the rock mass of coal mine gobs could be divided, from the bottom to the top, into a lower insufficient compression zone (ICZ) and an upper sufficient compression zone (SCZ). From bottom to top, the void ratios in the ICZ sharply decreased and those in the SCZ slowly decreased. Void ratios in the ICZ were 1.2–1.7 times higher than those in the SCZ.