首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
地球科学   62篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1963年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
Comparison experiment between XBT of T-7 probe and CTD was conducted at 15 stations in the sea area centered on 29°N, 135°E in December 1985. There were systematic errors in XBT temperature profiles in comparison with CTD temperature profiles. The main cause of errors was attributed to an error in the free-fall speed of the XBT probes which was provided by the XBT maker. A previous equation for depth correction proposed by Heinmilleret al. (1983) could not give effective correction for our data. A new equation between the probe depth and the elapsed time from landing of the probe on the water was obtained by the method of adjusting temperature gradients of XBT profiles to those of CTD profiles. This equation agreed with the theoretical result given by Seaver and Kuleshov (1982) much better than that of Heinmilleret al. (1983). Systematic errors due to a scatter of values of the reference resistance and variation of B-constant of thermistors used in XBT also seemed to exist. After an adjustment using the temperature difference between XBT and CTD in the mixed layer with depths of about 100 m, the standard deviation of temperature difference between XBT and CTD from the surface to the depth of 750 m was 0.14°C.  相似文献   
2.
3.
The accuracy of temperature measurement by the expendable bathythermograph (XBT) is examined for five types of recorders by comparison with co-located CTD measurements and statistical analysis of temperature profiles including an isothermal layer. A positive temperature error increasing downward is occasionally detected for two types of Japanese recorder which have been commonly used among Japanese oceanographic institutions and marine observatories. This error resembles to that reported by Bailey et al. (1989) and Wright (1991) for a different type of recorders, although its cause is not clearly understood. The irregular occurrence of the error suggests that the problem is not solely due to the recorders but rather by some inconsistency of the whole measuring system including them, an XBT probe and sea water. The error is estimated to increase at a rate of O (0.1°C/100 m), and it could be close to 1°C at the deepest part of the profiles (760 m for Tsurumi T-7). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
Semigeostrophic gravity waves associated with a coastal boundary current, which has finite and uniform potential vorticity and is bounded away from the coastline by a density front on the ocean surface, are investigated. It is shown that the semigeostrophic coastal current has two waves which are named here the Semigeostrophic Coastal Wave (SCW) and the Semigeostrophic Frontal Wave (SFW). The SCW becomes an elementary Kelvin wave at some limit while the SFW is caused by the existence of the surface density front. The SCW appears mainly as variations in the upper layer depth at the coast and as alongshore velocity at the density front. On the other hand, the SFW appears mainly as variations in the width of the current. When the weak nonlinearity and ageostrophic effect are included, these semigeostrophic gravity waves satisfy the Kortweg- de Vries equation, which suggests that the local changes in the width and/or velocity of the semigeostrophic coastal current propagate as wave-like disturbances.  相似文献   
5.
Following our previous study (Sugimoto and Hanawa, 2005b), we further investigate the reason why reemergence of winter sea surface temperature anomalies does not occur in the North Pacific eastern subtropical mode water (NPESTMW) area, despite its occurrence in the North Pacific subtropical mode water and North Pacific central mode water areas. We use vertical temperature and salinity profiles of the World Ocean Circulation Experiment Hydrographic Program and Argo floats with high vertical and temporal resolution, together with heat flux data through the sea surface. We point out first that one of the causes for non-occurrence of reemergence is that the thickness of NPESTMW is very thin. In addition to this basic cause, two major reasons are found: a vigorous mixing in the lower portion of NPESTMW and less heat input from the atmosphere in the warming season. Since, in the lower portion of NPESTMW and deeper, the stratification is favorable for salt-finger type convection to occur compared with the other mode water areas, vigorous mixing takes place. This is confirmed by both a large Turner Angle there and the existence of staircase structures in vertical temperature and salinity profiles. From the viewpoint of heat input, the NPESTMW area gradually gains heat in the warming season compared with other mode water areas. As a result, NPESTMW cannot be capped so quickly by the shallow summer mixed layer, and water properties of NPESTMW are to be gradually modified, even in the upper portion.  相似文献   
6.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
The S/V Shoyo, of the Hydrographic Department, Japan Coast Guard, has conducted high-density expendable bathythermograph (XBT) measurements along the 32.5°N line in the North Pacific every year from 1990 to 1993 as a part of the Japanese-World Ocean Circulation Experiment (WOCE). These XBT data are analyzed here, focusing on year-to-year variations of the inventory and core layer temperature (CLT) of the North Pacific subtropical mode water (NPSTMW). Large year-to-year changes are found in the NPSTMW CLTs estimated in longitudes between 140°E and 160°E. CLT values were found of 17.4°C in 1990, 17.1°C in 1991, 17.3°C in 1992 and 17.6°C in 1993. Inspection of the wintertime westerlies over the formation area and sea surface temperature distribution revealed that this change in CLT can be qualitatively attributed to the strength of atmospheric cooling in the formation area in the previous winter. Although a large year-to-year variation of NPSTMW inventory was also found, it is hard to state any relationship between CLT and atmospheric forcing. There is a possibility that different observational seasons may affect the inventory. It has also been found that the thermocline depth in 1991 was shallower in the sea area east of 180° than in 1992 and 1993. Associated with this change, the North Pacific central mode water (NPCMW), characterized by thermostad with temperatures ranging from 14°C to 11°C, appears in the sea area east of 180° in the 1992 and 1993 cross sections. The 1993 cross section, which ranged from the Japanese coast to the west coast of North America, possessed another thermostad in the surface layer, with a temperature of about 17°C in the eastern part of the cross section, off California. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
9.
Laboratory measurements of ultrasonic wave propagation in tuffaceous sandstone (Kimachi, Japan) and granite (Iidate, Japan) were performed during increasing fracturing of the samples. The fracturing was achieved by unconfined uniaxial compression up to and beyond the point of macrofracture of the specimen using a constant low strain rate. The observed variation of wave velocity (up to 40 per cent) due to the development of micro- and macrofractures in the rock is interpreted by rock models relating velocity changes to damage and crack density. The calculated density of the newly formed cracks reaches higher values for the sandstone than for the granite. Using the estimated crack densities, the attenuation behaviour is interpreted in terms of different attenuation mechanisms; that is, friction and scattering. Rayleigh scattering as described by the model of Hudson (1981 ) may explain the attenuation qualitatively if the largest plausible crack dimensions are assumed in modelling.  相似文献   
10.
Applying segment-wise altimetry-based gravest empirical mode method to expendable bathythermograph temperature, Argo salinity, and altimetric sea surface height data in March, June, and November from San Francisco to near Japan (30° N, 145° E) via Honolulu, we estimated the component of the heat transport variation caused by change in the southward interior geostrophic flow of the North Pacific subtropical gyre in the top 700 m layer during 1993–2012. The volume transport-weighted temperature (TI) is strongly dependent on the season. The anomaly of TI from the mean seasonal variation, whose standard deviation is 0.14°C, was revealed to be caused mainly by change in the volume transport in a potential density layer of 25.0?25.5σ??. The anomaly of TI was observed to vary on a decadal or shorter, i.e., quasi-decadal (QD), timescale. The QD-scale variation of TI had peaks in 1998 and 2007, equivalent to the reduction in the net heat transport by 6 and 10 TW, respectively, approximately 1 year before those of sea surface temperature (SST) in the warm pool region, east of the Philippines. This suggests that variation in TI affects the warm pool SST through modification of the heat balance owing to the entrainment of southward transported water into the mixed layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号