首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   2篇
地球科学   62篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
1.
In order to estimate primary production from ocean color satellite data using the Vertical Generalized Production Model (VGPM; Behrenfeld and Falkowski, 1997), we propose a two-phytoplankton community model. This model is based on the two assumptions that changes in chlorophyll concentration result from changes of large-sized phytoplankton abundance, and chlorophyll specific productivity of phytoplankton tends to be inversely proportional to phytoplankton size. Based on the analysis of primary production data, P opt B , which was one parameter in the VGPM, was modeled as a function of sea surface temperature and sea surface chlorophyll concentration. The two-phytoplankton community model incorporated into the VGPM gave good estimates in a relatively high productive area. Size-fractionated primary production was estimated by the two-phytoplankton community model, and P opt B of small-sized phytoplankton was 4.5 times that of large-sized phytoplankton. This result fell into the ranges observed during field studies.  相似文献   
2.
Remote sensing reflectance [R rs(λ)] and absorption coefficients of red tides were measured in Isahaya Bay, southwestern Japan, to investigate differences in the optical properties of red tide and non-red tide waters. We defined colored areas of the sea surface, visualized from shipboard, as “red tides”. Peaks of the R rs(λ) spectra of non-red tide waters were at 565 nm, while those of red tides shifted to longer wavelengths (589 nm). The spectral shape of R rs(λ) was close to that of the reciprocal of the total absorption coefficient [1/a(λ)], implying that the R rs(λ) peak is determined by absorption. Absorption coefficients of phytoplankton [a ph(λ)], non-pigment particles and colored dissolved organic matter increased with increasing chlorophyll a concentration (Chl a), and those coefficients were correlated with Chl a for both red tide and non-red tide waters. Using these relationships between absorption coefficients and Chl a, variation in the spectrum of 1/a(λ) as a function of Chl a was calculated. The peak of 1/a(λ) shifted to longer wavelengths with increasing Chl a. Furthermore, the relative contribution of a ph(λ) to the total absorption in red tide water was significantly higher than in non-red tide water in the wavelength range 550–600 nm, including the peak. Our results show that the variation of a ph(λ) with Chl a dominates the behavior of the R rs(λ) peak, and utilization of R rs(λ) peaks at 589 and 565 nm may be useful to discriminate between red tide and non-red tide waters by remote sensing.  相似文献   
3.
Time series of the chlorophyll-a concentration (Chl-a) observed by ocean color satellites from 1998 to 2009 were used to assess eutrophication in Toyama Bay, the Sea of Japan. An overall mean of Chl-a during the 12-year period was used to divide the study area into “high” or “low” Chl-a areas based on a reference condition of 5 mg m?3. The annual maximum monthly mean Chl-a trend was estimated pixel-wise and its significance examined by the Sen slope test at a 90 % confidence level. By combining the level and trend of remotely sensed Chl-a, Toyama Bay was then classified into six eutrophication states: high-increasing, high-no trend, high-decreasing, low-increasing, low-no trend and low-increasing. Our study indicates that the combined use of both the level and trend of remotely sensed Chl-a can be an efficient method to preliminarily assess eutrophication of coastal waters after a quality screening process with level 2 flags and validation with in situ Chl-a data.  相似文献   
4.
High resolution SeaWiFS data was used to detect red tide events that occurred in the Ariake Sound, Japan, a small embayment known as one of the most productive areas in Japan. SeaWiFS chlorophyll data clearly showed that a large red tide event, which damaged seaweed (Nori) cultures, started early in December 2000 in Isahaya Bay, expanded to the whole sound and persisted to the end of February 2001. The monthly average of SeaWiFS data from May 1998 to December 2001 indicated that the chlorophyll peaks appeared twice a year, in early summer and in fall, after the peaks of rain and river discharge. The SeaWiFS data showed that the red tide event during 2000–2001 winter was part of the fall bloom; however, it started later and continued significantly longer than other years. Satellite ocean color data is useful to detect the red tide; however the algorithms require improvement to accurately estimate chlorophyll in highly turbid water and in red tide areas.  相似文献   
5.
We present calibration and validation results of the OCTS’s ocean color version-3 product, which mainly consists of the chlorophyll-a concentration (Chl-a) and the normalized water-leaving radiance (nLw). First, OCTS was calibrated for the inter-detector sensitivity difference, offset, and absolute sensitivity using external calibration source. It was also vicariously calibrated using in-situ measurements for water (Chl-a andnLw) and atmosphere (optical thickness), which were acquired synchronously with OCTS under cloud-free conditions. Second, the product was validated using selected 17 in-situ Chl-a and 11 in-situnLw measurements. We confirmed that Chl-a was estimated with an accuracy of 68% for Chl-a less than 2 mg/m3, andnLw from 94% (band 2) to 128% (band 4). Geometric accuracy was improved to 1.3 km. Stripes were significantly reduced by modifying the detector normalization factor as a function of input radiance.  相似文献   
6.
7.
8.
Airborne measurements made during August 1985 over Greenland and its environs show that both accumulation-mode (0.1 m D2.0 m) and giant (D2 m) particles were present in relatively high concentrations in arctic haze layers and that the accumulation-mode particles dominated light scattering. Particles with diameters (D) between 1 and 4 m consisted predominately of mixed materials, small and dense inclusions, and probably organic compounds containing sulfur. Many of the particles from 0.1 to 1 m in diameter were also of mixed composition, with sulfuric acid, ammonium sulfate and organics probably the dominant constituents.  相似文献   
9.
High-magnesian andesites of middle Miocene age occur in southwest Japan, forming an obvious volcanic belt. These andesites have low FeO*/MgO ratios (0.546–0.931), and are rich in Ni (101–312 ppm), Co (30.0–45.1 ppm), and Cr (208–756 ppm). They are relatively aphyric (phenocrysts <10 vol.%), and the phenocrysts of magnesian olivine (~Fo88) are in equilibrium with the host high-magnesian andesite magmas on the basis of the Fe-Mg exchange partitioning. These features suggest that the high-magnesian andesites are not differentiated or accumulative; they appear to represent primary andesites generated in the upper mantle. These southwest Japanese high-magnesian andesites are rich in incompatible elements, and show light rare earth enrichment relative to boninites, suggesting that the former is derived from a less depleted mantle source than the latter.  相似文献   
10.
A bio-optical dataset collected during the 1998?C2007 period in the Yellow and East China Seas (YECS) was used to provide alternative empirical ocean-color algorithms in the retrieval of chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) absorption coefficients at 440 nm (ag440). Assuming that remote-sensing reflectance (Rrs) could be retrieved accurately, empirical algorithms for TChl (regionally tuned Tassan??s Chl-a algorithm) in case-1 waters (TChl2i in case-2 waters), TTSM (regionally tuned Tassan??s TSM algorithm), and Tag440 or Cag440 (regionally tuned Tassan??s or Carder??s ag440 algorithm) were able to retrieve Chl-a, TSM, and ag440 with uncertainties as high as 35, 46, and 35%, respectively. Applying the standard SeaWiFS Rrs, TChl was not viable in the eastern part of the YECS, which was associated with an inaccurate SeaWiFS Rrs retrieval because of improper atmospheric correction. TChl behaved better than other algorithms in the turbid case-2 waters, although overestimation was still observed. To retrieve more reliable Chl-a estimates with standard SeaWiFS Rrs in turbid water (a proxy for case-2 waters), we modified TChl for data with SeaWiFS normalized water-leaving radiance at 555 nm (nLw555) > 2 mW cm?2 ??m?1 sr?1 (TChl2s). Finally, with standard SeaWiFS Rrs, we recommend switching algorithms from TChl2s (for case-2 waters) to MOCChl (SeaWiFS-modified NASA OC4v4 standard algorithm for case-1 waters) for retrieving Chl-a, which resulted in uncertainties as high as 49%. To retrieve TSM and ag440 using SeaWiFS Rrs, we recommend empirical algorithms for TTSM (pre-SeaWiFS-modified form) and MTag440 or MCag440 (SeaWiFS Rrs-modified forms of Tag440 or Cag440). These could retrieve with uncertainties as high as 82 and 52%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号