首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   19篇
  国内免费   2篇
工业技术   183篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   21篇
  2020年   20篇
  2019年   7篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   9篇
  2014年   8篇
  2013年   13篇
  2012年   7篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  2000年   2篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
1.
Fluoroquinolones, a new class of compounds characterised by broad antimicrobial spectrum including mycobacteria together with limited toxicity, have recently been introduced in the chemotherapy of various human infectious diseases. Pefloxacin, one of the members of this class, was recently demonstrated to be bactericidal against M.leprae in the mouse foot-pad model and clinically beneficial in lepromatous leprosy patients. Clinical response to standard MDT with added pefloxacin in ten previously untreated (both PB and MB) was compared with that in ten similar patients on MDT alone in the present trial. The results of chemotherapy were quantified by a method of clinical scoring. This pilot study showed that addition of pefloxacin led to significant and rapid clinical improvement. There were no side effects attributable to pefloxacin.  相似文献   
2.
Silicon - In the present report, a photonic crystal based micro-ring resonator (MRR) structure is proposed which is very compact in size and has very fast response and is employed for temperature...  相似文献   
3.
Powder Metallurgy and Metal Ceramics - Powder compaction is the most crucial process in powder metallurgy since almost all the desired properties of a material, such as a shape, size, density,...  相似文献   
4.
Cartilage lesions are difficult to repair due to low vascular distribution and may progress into osteoarthritis. Despite numerous attempts in the past, there is no proven method to regenerate hyaline cartilage. The purpose of this study was to investigate the ability to use a 3D printed biomatrix to repair a critical size femoral chondral defect using a canine weight-bearing model. The biomatrix was comprised of human costal-derived cartilage powder, micronized adipose tissue, and fibrin glue. Bilateral femoral condyle defects were treated on 12 mature beagles staged 12 weeks apart. Four groups, one control and three experimental, were used. Animals were euthanized at 32 weeks to collect samples. Significant differences between control and experimental groups were found in both regeneration pattern and tissue composition. In results, we observed that the experimental group with the treatment with cartilage powder and adipose tissue alleviated the inflammatory response. Moreover, it was found that the MOCART score was higher, and cartilage repair was more organized than in the other groups, suggesting that a combination of cartilage powder and adipose tissue has the potential to repair cartilage with a similarity to normal cartilage. Microscopically, there was a well-defined cartilage-like structure in which the mid junction below the surface layer was surrounded by a matrix composed of collagen type I, II, and proteoglycans. MRI examination revealed significant reduction of the inflammation level and progression of a cartilage-like growth in the experimental group. This canine study suggests a promising new surgical treatment for cartilage lesions.  相似文献   
5.
In this study, first time a nanoformulation, saponin-loaded SBA-15 has been developed for an improved and continuous release. The SBA-15 nanopowder was synthesized by a hydrothermal process. Saponin was introduced into the mesoporous channels of SBA-15 and its concentration in SBA-15 was measured by UV–visible spectrophotometry. The pristine SBA-15 and saponin-loaded SBA-15 were characterized by small-angle XRD, FESEM, HRTEM, TGA, FTIR. N2 adsorption–desorption isotherms were used to measure the specific surface area and pore channel structure parameters of pristine and loaded SBA-15. Saponin release was studied in phosphate buffered saline (pH 7.4), which revealed that the release rate could be effectively controlled. The controlled drug release is highly desired for cancer treatment. The cytotoxicity of pristine and loaded SBA-15 was analyzed on Panc-I cancer cells. Both the pristine SBA-15 and saponin-loaded SBA-15 nanoparticles showed specific toxicity on the cancer cells. The preliminary results showed that saponin-loaded SBA-15 could be an effective therapeutic agent for Panc-I cancer cells.  相似文献   
6.
Abstract

In the present study, thermoelastic analysis of laminated composite and sandwich shells (cylindrical/spherical) is presented using fifth-order shear and normal deformation theory. The significant characteristic of the present theory is that it includes the effects of both transverse shear and normal deformations. The mathematical formulation uses the principle of virtual work to derive the variationally consistent governing equations and traction free boundary conditions. To obtain the static solution, these governing equations are solved by employing Navier’s solution technique. The shell is subjected to a mechanical/thermal load sinusoidally distributed over the top surface of the shell. The thermal load linearly varies across the thickness of the shell. The present results are compared with other higher-order models and 3D elasticity solution wherever possible. Thermal stresses presented in this study will act as a benchmark for the future work.  相似文献   
7.
8.
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.  相似文献   
9.
The use of α, ω‐alkanedisulfonic acid, HO3S(CH2)nSO3H (n = 1, 4, 6 and 12), as a dopant for polyaniline (PANi) was investigated. This series of disulfonic acids with varying chain lengths were synthesized and used in the doping of PANi. The doped polymers showed conductivity in the range 10?2 to 10?1 S cm?1. Thermal studies showed that the doped polymers, depending on the chain length of α,ω‐alkanedisulfonic acid, were stable up to ca 300 °C and the thermal stability decreased with increasing dopant chain length. The thermal stability of α,ω‐alkanedisulfonic acid‐doped PANi was higher than that of alkanesulfonic acid‐doped PANi which typically degrades around 250 °C, suggesting a moderately broader processing window for α,ω‐alkanedisulfonic acid‐doped PANi for blending with other thermoplastics. Copyright © 2012 Society of Chemical Industry  相似文献   
10.
Recently, we have developed an experimental method for the detection of triplet states generated by laser excitation in supersonic beams. It is based on electron ejection from low work-function surfaces by metastable triplet states. We have detected both directly laser-excited triplets and triplets generated via intersystem crossing from laser-excited singlet states. Here, we review the applications of this method and discuss its mechanism. By comparing the laser-induced fluorescence (LIF) spectrum and Surface Electron Ejection by Laser-Excited Metastables (SEELEM), we have measured relative triplet formation quantum yields for several aromatic compounds. By utilizing a detector mounted on a translational stage, we could vary the distance between the pulsed laser excitation and the detector and measure the decay rates of triplets in molecular beams. The major advantage of the method is in extending the measurement of triplet lifetimes to the ∼ 1-ms range. The combination of LIF, SEELEM, and fluorescence quantum yields enabled us to discriminate between intersystem crossing and internal conversion in isoquinoline. SEELEM is now being utilized in studying the spectroscopy and the dynamics of directly laser-excited triplet states. Although the oscillator strength of the lowest triplet state of pyrazine is about 10−8, we have measured the spectrum and the decay rates of its various vibronic levels. Our results support the notion that surface Penning ionization is the mechanism of SEELEM. The detector is insensitive to vibrational energy (thus enabling the distinction between intersystem crossing and internal conversion). The detection sensitivity of triplets rises with the excess electronic energy and with the lowering of the surface work-function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号