首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   4篇
工业技术   46篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1998年   1篇
  1985年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
2.
This paper presents analytical results of the diurnal variations in Ku band rain attenuation along earth–space paths at four locations in Southeast Asia and proposes a new model that can predict rain fade in a short period of every 2 h daily. Data from four radiometers and four rain gauges over a 3 year period were analysed to obtain the characteristics of diurnal variations in rain attenuation and rainfall as well as cumulative attenuation distributions in every 2 h interval. The results of this analysis are applied to develop an intensive prediction model using the knowledge of rainfall and attenuation statistics. This model is tested with the measured data and is found to be useful for the design of a more efficient Ku band satellite system especially between 99 per cent and 99·9 per cent link availability in an area of heavy rainfall. © 1998 John Wiley & Sons, Ltd.  相似文献   
3.
CaCu3-xNixTi4O12 (x?=?0, 0.05, and 0.10) powders were synthesized using a solid state reaction method. Phase structure and microstructure analyses revealed that all sintered CaCu3-xNixTi4O12 ceramics were of a pure phase. The CaCu3Ti4O12 ceramics had a dense microstructure and grain sizes were enlarged by doping with Ni2+. Interestingly, the dielectric permittivity was significantly enhanced, whereas the loss tangent was greatly suppressed to ~0.046–0.034 at 1?kHz. All sintered ceramics exhibited non-Ohmic characteristics. Clarification of the influences of DC bias showed that the dielectric permittivity and loss tangent values were increased by DC bias. The resistance of grain boundaries and the associated conduction activation energy of CaCu3-xNixTi4O12 ceramics were reduced as the DC bias voltage increased. Therefore, the observed non-Ohmic behavior and significantly enhanced dielectric properties should be closely related to variation in the Schottky barriers at the grain boundaries.  相似文献   
4.
5.
近来高压驱动器颇受人们关注,因为这类驱动器在驱动压电元件和光电元件方面起着重要作用;图1示出了一种简单廉价的IkV驱动器.该电路使用了脱机电流型控制技术以及一种回扫开关电源设计,1ct(UC3844)为主要控制元件其开关频率为100kHz。该IC提供频率调制以降低轻载或无载状况下的开关频率:从误差放大器输出端取得的反馈电压用作负载状况指示信号。  相似文献   
6.
The dielectric and non‐Ohmic properties of Na1/2Y1/2Cu3Ti4O12 ceramics sintered under various conditions to obtain different microstructures were investigated. Microstructure analysis confirmed the presence of Na, Y, Cu, Ti, and O and these elements were well dispersed in the microstructure. Na1/2Y1/2Cu3Ti4O12 ceramics exhibited non‐Ohmic characteristics with large nonlinear coefficients of about 5.7–6.6 irrespectively of sintering conditions. The breakdown electric field of fine‐grained ceramic with the mean grain size of ≈1.7 μm (≈5600 V/cm) was much larger than those of the course‐grained ceramics with grain sizes of ≈9.5–10.4 μm (≈1850–2180 V/cm). Through optimization of sintering conditions, a low loss tangent of about 0.03 and very high dielectric permittivities of 18 000–23 000 with good temperature stability were successfully accomplished. The electrical responses of the grains and grain boundaries can, respectively, be well described using admittance and impedance spectroscopy analyses based on the brickwork layer model. A possible mechanism for the origin of semiconducting grains is discussed. The colossal dielectric response was reasonably described as closely correlated with the electrically heterogeneous microstructure by means of strong interfacial polarization at the insulating grain‐boundary layers. The non‐Ohmic properties of Na1/2Y1/2Cu3Ti4O12 ceramics were primarily related to their microstructure, i.e., grain size and volume fraction of grain boundaries.  相似文献   
7.
This paper proposes a novel explicit rate allocation algorithm called Fast Rate Allocation Congestion Avoidance (FRACA) algorithm supporting non‐zero minimum cell rate (MCR). The non‐zero MCR guarantee strategy for ABR service in ATM networks focused in this paper is MCR plus equal share (The ATM Forum Traffic Management Specification, version 4.0. April 1996). The main goals for designing the algorithm are the fast convergence according to the max–min fairness criteria, fairness among all sessions, maximum network utilization while the switch queue length is properly controlled. At the same time, it should work well under a wide range of network conditions without the need for adjusting the algorithm parameters. The performance of the proposed algorithm is evaluated and compared with the Generic Weighted Fairness (GWF) ERICA + (J Comput Comm 2000; 149). Simulation results show that the proposed algorithm achieves the design goals in the evaluated scenarios. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
8.
The microstructural evolution, non‐Ohmic properties, and giant dielectric properties of CaCu3Ti4?xGexO12 ceramics (x=0‐0.10) are systematically investigated. The Rietveld refinement confirms the existence of a pure CaCu3Ti4O12 phase in all samples. Significantly enlarged grain sizes of CaCu3Ti4?xGexO12 ceramics are associated with the liquid phase sintering mechanism. Enhanced dielectric permittivity from 6.90×104 to 1.08×105 can be achieved by increasing Ge4+ dopant from x=0‐0.10, whereas the loss tangent is remarkably reduced by a factor of ≈10. NonOhmic properties are enhanced by Ge4+ doping ions. Using impedance and admittance spectroscopies, the underlying mechanisms for the dielectric and nonlinear properties are well described. The improved nonlinear properties and reduced loss tangent are attributed to the enhanced resistance and conduction activation energy of the grain boundaries. The largely enhanced permittivity is closely associated with the enlarged grain sizes and the increase in the Cu+/Cu2+ and Ti3+/Ti4+ ratios, which are calculated from the X‐ray absorption near‐edge structure.  相似文献   
9.
The effects of Ta5+ substitution on the microstructure, electrical response of grain boundary, and dielectric properties of CaCu3Ti4O12 ceramics were investigated. The mean grain size decreased with increasing Ta5+ concentration, which was ascribed to the ability of Ta5+ doping to inhibit grain boundary mobility. This can decrease dielectric constant values. Grain boundary resistance and potential barrier height of CaCu3Ti4O12 ceramics were reduced by doping with Ta5+. This results in enhancement of dc conductivity and the related loss tangent. Influence of charge compensations on microstructure and intrinsic electrical properties of grain boundaries resulting from the effects of replacing Ti4+ with Ta5+ are discussed. The experimental data and variation caused by the substitution of Ta5+ can be described well by the internal barrier layer capacitor model based on space charge polarization at the grain boundaries.  相似文献   
10.
Pure CaCu3Ti4O12 was successfully prepared by a glycine‐nitrate process using a relatively low calcination temperature and short reaction time of 760°C for 4 h. Fine‐grained CaCu3Ti4O12 ceramics with dense microstructure and small grain size were obtained after sintering for 1 h. The nonlinear coefficient of a fine‐grained CaCu3Ti4O12 ceramic calculated in the range 1–10 mA/cm2 was found to be very high of ~16.39 with high breakdown electric field strength of 1.46 × 104 V/cm. This fine‐grained CaCu3Ti4O12 ceramic also exhibited a very low loss tangent of 0.017 at 20°C with temperature stability over the range ?55°C to 85°C. The grain growth rate of the CaCu3Ti4O12 ceramics was found to be very fast after increasing the sintering time from 1.5 to 3 h, leading to formation of a coarse‐grained CaCu3Ti4O12 ceramic with grain size of about 100–200 μm. The dielectric permittivity of this coarse‐grained ceramic was found to be as high as 1.03 × 105 with a low loss tangent of 0.054.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号