首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   10篇
  国内免费   1篇
工业技术   122篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   7篇
  2019年   19篇
  2018年   12篇
  2017年   10篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   14篇
  2012年   10篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
1.
This paper presents a novel image encryption/decryption algorithm based on chaotic neural network (CNN). The employed CNN is comprised of two 3-neuron layers called chaotic neuron layer (CNL) and permutation neuron layer (PNL). The values of three RGB (Red, Green and Blue) color components of image constitute inputs of the CNN and three encoded streams are the network outputs. CNL is a chaotic layer where, three well-known chaotic systems i.e. Chua, Lorenz and Lü systems participate in generating weights and biases matrices of this layer corresponding to each pixel RGB features. Besides, a chaotic tent map is employed as the activation function of this layer, and makes the relationship between the plain image and cipher image nonlinear. The output of CNL, i.e. the diffused information, is the input of PNL, where three-dimensional permutation is applied to the diffused information. The overall process is repeated several times to make the encryption process more robust and complex. A 160-bit-long authentication code has been used to generate the initial conditions and the parameters of the CNL and PNL. Some security analysis are given to demonstrate that the key space of the new algorithm is large enough to make brute-force attacks infeasible and simulations have been carried out with detailed numerical analysis, demonstrating the high security of the new image encryption scheme.  相似文献   
2.
The volatile compositions of 192 olive oil samples from five different European countries were investigated by PTR-MS sample headspace analysis. The mass spectra of all samples showed many masses with high abundances, indicating the complex VOC composition of olive oil. Three different PLS-DA models were fitted to the data to classify samples into ‘country’, ‘region’ and ‘district’ of origin, respectively. Correct classification rates were assessed by cross-validation. The first fitted model produced an 86% success rate in classifying the samples into their country of origin. The second model, which was fitted to the Italian oils only, also demonstrated satisfactory results, with 74% of samples successfully classified into region of origin. The third model, classifying the Italian samples into district of origin, yielded a success rate of only 52%. This lower success rate might be due to either the small class set, or to genuine similarities between olive oil VOC compositions on this tight scale.  相似文献   
3.
Three‐dimensional fluorinated pentablock poly(l ‐lactide‐co‐ε‐caprolactone)‐based scaffolds were successfully produced by the incorporation of thermally exfoliated graphene oxide (TEGO) as an antimicrobial agent with an electrospinning technique. In a ring‐opening polymerization, the fluorinated groups in the middle of polymer backbone were attached with a perfluorinated reactive stabilizer having oxygen‐carrying ability. The fiber diameter and its morphologies were optimized through changes in TEGO amount, voltage, polymer concentration, and solvent type to obtain an ideal scaffold structure. Instead of the widely used graphene oxide synthesized by Hummer's method, TEGO sheets having a low amount of oxygen produced by thermal expansion were integrated into the fiber structure to investigate the effect of the oxygen functional groups of TEGO sheets on the degradation and antimicrobial activity of the scaffolds. There was no antimicrobial activity in TEGO‐reinforced scaffolds in the in vitro tests in contrast to the literature. This study confirmed that a low number of oxygen functional groups on the surface of TEGO restricted the antimicrobial activity of the fabricated composite scaffolds. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43490.  相似文献   
4.
5.
Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.  相似文献   
6.
7.
Heavy-section assembly of hydroelectric turbine runner materials using single-pass, autogenous EBW was demonstrated to penetrate a 90-mm-thick butt joint. The welding-induced distortions and residual stresses were characterised to understand the impact of the materials and process conditions (e.g. preheating and/or PWHT). Using 3D optical measurements, the angular distortions of EB-welded UNS S41500 and CA6NM steels were determined to be 0.13° and 0.38°, respectively. The longitudinal residual stresses, measured through the contour method, had a M-shaped distribution throughout the thickness with minimum (~?500?MPa) compressive stresses in the FZ and maximum (~600?MPa) tensile stresses in the HAZ. After PWHT, the tensile and compressive stresses reduced to ~100?MPa.  相似文献   
8.
Essential oils (EO) are complex secondary metabolites, which are produced by aromatic plants and identified by their powerful odors. Present studies on EO and their isolated ingredients have drawn the attention of researchers to screen these natural products and evaluate their effect on the cardiovascular system. Some EO, and their active ingredients, have been reported to improve the cardiovascular system significantly by affecting vaso-relaxation, and decreasing the heart rate and exert a hypotension activity. Several mechanisms have been proposed for the role of EO and their main active components in promoting the health of the cardiovascular system. The objective of this review is to highlight the current state of knowledge on the functional role of EO extracted from plants for reducing the risk of cardiovascular diseases and their mechanisms of action. Research on EO has the potential to identify new bioactive compounds and formulate new functional products for the treatment of cardiovascular diseases such as arterial hypertension, angina pectoris, heart failure, and myocardial infarction.  相似文献   
9.
The effects of postweld heat treatment (PWHT) on 3.2-mm- and 5.1-mm-thick Ti-6Al-4V butt joints welded using a continuous wave (CW) 4-kW Nd:YAG laser welding machine were investigated in terms of microstructural transformations, welding defects, and hardness, as well as global and local tensile properties. Two postweld heat treatments, i.e., stress-relief annealing (SRA) and solution heat treatment followed by aging (STA), were performed and the weld qualities were compared with the as-welded condition. A digital image correlation technique was used to determine the global tensile behavior for the transverse welding samples. The local tensile properties including yield strength and maximum strain were determined, for the first time, for the laser-welded Ti-6Al-4V. The mechanical properties, including hardness and the global and local tensile properties, were correlated to the microstructure and defects in the as-welded, SRA, and STA conditions.  相似文献   
10.
This paper presents the chaos suppression problem in the class of Hopfield neural networks (HNNs) with input nonlinearity using inverse optimality approach. Using the inverse optimality technique and based on Lyapunov stability theory, a stabilizing control law, which is optimal with respect to meaningful cost functional, is determined to achieve global asymptotically stability in the closed-loop system. Numerical simulation is performed on a four-dimensional hyper-chaotic HNN to demonstrate the effectiveness of the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号