首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   5篇
  国内免费   4篇
工业技术   266篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2018年   15篇
  2017年   11篇
  2016年   9篇
  2015年   8篇
  2014年   11篇
  2013年   22篇
  2012年   13篇
  2011年   15篇
  2010年   14篇
  2009年   6篇
  2008年   13篇
  2007年   13篇
  2006年   10篇
  2005年   10篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   6篇
  1996年   14篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1990年   1篇
  1986年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1970年   1篇
排序方式: 共有266条查询结果,搜索用时 0 毫秒
1.
Complex reflectance phenomena such as specular reflections confound many vision problems since they produce image ‘features’ that do not correspond directly to intrinsic surface properties such as shape and spectral reflectance. A common approach to mitigate these effects is to explore functions of an image that are invariant to these photometric events. In this paper we describe a class of such invariants that result from exploiting color information in images of dichromatic surfaces. These invariants are derived from illuminant-dependent ‘subspaces’ of RGB color space, and they enable the application of Lambertian-based vision techniques to a broad class of specular, non-Lambertian scenes. Using implementations of recent algorithms taken from the literature, we demonstrate the practical utility of these invariants for a wide variety of applications, including stereo, shape from shading, photometric stereo, material-based segmentation, and motion estimation.  相似文献   
2.
One of the simplest ways to generate electric power from waste heat is thermoelectric (TE) energy conversion. So far, most of the research on thermoelectrics has focused on inorganic bulk TE materials and their device applications. However, high production costs per power output and limited shape conformity hinder applications of state-of-the-art thermoelectric devices (TEDs). In recent years, printed thermoelectrics has emerged as an exciting pathway for their potential in the production of low-cost shape-conformable TEDs. Although several inorganic bulk TE materials with high performance are successfully developed, achieving high performance in inorganic-based printed TE materials is still a challenge. Nevertheless, significant progress has been made in printed thermoelectrics in recent years. In this review article, it is started with an introduction signifying the importance of printed thermoelectrics followed by a discussion of theoretical concepts of thermoelectricity, from fundamental transport phenomena to device efficiency. Afterward, the general process of inorganic TE ink formulation is summarized, and the current development of the inorganic and hybrid inks with the mention of their TE properties and their influencing factors is elaborated. In the end, TEDs with different architecture and geometries are highlighted by documenting their performance and fabrication techniques.  相似文献   
3.
BACKGROUND: A major bottleneck in microalgal biodiesel production is lipid content, which is often low in microalgal species. The present study examines Chlorella vulgaris as a potential feedstock for biodiesel by identifying and evaluating the relationships between the critical variables that enhance the lipid yield, and characterizes the biodiesel produced for various properties. RESULTS: Factors affecting lipid accumulation in a green microalga, Chlorella vulgaris were examined. Multifactor optimization raised the lipid pool to 55% dry cell weight against 9% control. When C. vulgaris cells pre‐grown in glucose (0.7%)‐supplemented medium were transferred to the optimized condition at the second stage, the lipid yield was boosted to 1974 mg L?1, a value almost 20‐fold higher than for the control. The transesterified C. vulgaris oil showed the presence of ~82% saturated fatty acids, with palmitate and stearate as major components, thus highlighting the oxidative stability of C. vulgaris biodiesel. The fuel properties (density, viscosity, acid value, iodine value, calorific value, cetane index, ash and water contents) are comparable with the international (ASTM and EN) and Indian (IS) biodiesel standards. CONCLUSION: C. vulgaris biomass with 55% lipid content and adequate fuel properties is potentially a renewable feedstock for biodiesel. Copyright © 2011 Society of Chemical Industry  相似文献   
4.
This present study is a preliminary exploration of the affinity between a carboxylic model drug ibuprofen and aluminum hydroxide. Ibuprofen was comilled with aluminum hydroxide in different weight ratios in the solid state and was characterized by scanning electron microscopy (SEM), X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution studies. XRD and SEM studies indicated complete interaction of ibuprofen with aluminum hydroxide and complete amorphization of aluminum hydroxide–ibuprofen complexed salt as well, on comilling with aluminum hydroxide at 1:2 ratio. FTIR data showed the disappearance of acid carbonyl peak with the appearance and the corresponding increase in absorbance of new signal at 1,682 cm?1 in the 1:1 and 1:2 ibuprofen–aluminum hydroxide-comilled powder. The accompanied increase in the absorbance of carboxylate peak in the ibuprofen–aluminum hydroxide physical mixture, and 1:0.1, 1:0.5, 1:1, and 1:2 (IBApm, and IB1A0.1, IB1A0.5, IB1A1, and IB1A2, respectively) comilled powder indicated an acid–base reaction between ibuprofen and aluminum hydroxide. On storage at 40°C and 75% relative humidity (RH) for 10 weeks, XRD study showed the absence of reversion to the crystalline state and FTIR data revealed continued increase of new signal at 1,682 cm?1 relative to carboxylic acid peak and no reappearance of carboxylic acid peak. In vitro dissolution studies revealed that the percent release of ibuprofen from the aluminum hydroxide-comilled powder is in the following order: IB1A2 < IB1A1 < ibuprofen crystal < ibuprofen milled alone < IB1A0.1 < IB1A0.5. Aluminum metal cation might have interacted to form a complex through the carboxyl and carbonyl groups of ibuprofen. Improved dissolution of drug associated with IB1A0.1 and IB1A0.5 is because of the absence of a new signal at 1,682 cm?1 and improved amorphization of the drug to some extent. Dissolution of drug affected in IB1A2 and IB1A1 may be because of the insoluble stable complex formation.  相似文献   
5.
Pure water is the fundamental requisite for human life. The water has been recycled naturally but not in an adequate amount for consumption. Nanotechnology with extraordinary applications provides competent ways for the decontamination of contaminated water. In the present study MnWO4 nanoflowers endorsed with inherent antibacterial activity were successfully synthesized by facile hydrothermal approach. XRD, SEM, EDX spectroscopy and UVDRS were used to characterize the as-synthesized nanoflowers. Gram negative Escherichia coli ATCC 52922 bacterium was used as model organism to test antibacterial activity of as-synthesized MnWO4 nanoflowers. This study was conducted to optimize minimum concentration of MnWO4 nanoflowers and maximum contact time required to achieve complete inactivation of bacteria present in contaminated water. Minimum inhibitory concentration (MIC) of MnWO4 nanoflowers was found to be 10 μg/ml. The assessment and interpretation of bacterial viability was done using dual fluorescent staining. The synthesized 3D-nanoflowers were found as potent bactericides. Thus, MnWO4 nanoflowers emerged to be very good future material for disinfection of biological pollutants present in the contaminated water reservoirs and as an anti-biofouling agent.  相似文献   
6.
Resin cross-flow during compression molding of unidirectional sheet molding compound composites, such as CSMC and XMC, may cause severe misorientation of the continuous fibers in the outer layers. The extent of fiber misorientation depends on the type of molding compound, the length of cross-flow, and the location of the charge in the mold. The tensile strength is reduced in the direction of cross-flow with decreasing mold surface coverage. However, since severe fiber misorientation is generally restricted to the outer layers, increasing the number of plies improves the tensile strength to the level observed with little or no misorientation.  相似文献   
7.
8.
We have developed a phase-field model for grain growth in the presence of mobile second-phase particles. In this model, each grain and particle is represented by a unique order parameter. The grain boundaries sweep the mobile particles during grain growth. The particle velocity is taken to be proportional to the driving force arising from the curvature of the phase boundary in the neighborhood of the particle. The proportionality factor is the constitutive parameter representing the mobility of the particle. We first study the model in a one-dimensional axisymmetric setting and compare the results with theoretical calculations. We then study the interaction of a bicrystal grain boundary with a dilute distribution of particles. Finally we show the effect of particles on polycrystalline grain growth.  相似文献   
9.
10.
InAs-GaSb strain layer superlattice p+-n--n avalanche photodiodes (APDs) are fabricated using a newly introduced electron-beam aided zinc sulfide deposition. Temperature-dependent measurements were performed on 300 times 300 mum2 mesa etched APDs. The effect of passivation was also studied on the diode characteristics and APD performances. Temperature-dependent gain strongly correlates with avalanche mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号