首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14729篇
  免费   332篇
  国内免费   25篇
工业技术   15086篇
  2022年   134篇
  2021年   183篇
  2020年   137篇
  2019年   155篇
  2018年   196篇
  2017年   185篇
  2016年   249篇
  2015年   202篇
  2014年   298篇
  2013年   863篇
  2012年   481篇
  2011年   622篇
  2010年   455篇
  2009年   514篇
  2008年   582篇
  2007年   512篇
  2006年   503篇
  2005年   434篇
  2004年   405篇
  2003年   355篇
  2002年   345篇
  2001年   258篇
  2000年   265篇
  1999年   267篇
  1998年   584篇
  1997年   455篇
  1996年   389篇
  1995年   291篇
  1994年   256篇
  1993年   302篇
  1992年   214篇
  1991年   180篇
  1990年   180篇
  1989年   207篇
  1988年   173篇
  1987年   211篇
  1986年   176篇
  1985年   202篇
  1984年   197篇
  1983年   161篇
  1982年   160篇
  1981年   140篇
  1980年   138篇
  1979年   129篇
  1978年   130篇
  1977年   161篇
  1976年   181篇
  1975年   127篇
  1974年   125篇
  1973年   107篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
The proliferation of both online and bricks and mortar outlet stores underscores the observation that secondary markets are readily accessible to retailers of short-life-cycle products. These secondary markets provide recourse channels for retailers to sell excess inventory of out-of-favor items at reduced prices when overstocking occurs in a primary market. We study the problem of determining when a retailer should terminate its primary selling season by selling remaining inventory on a secondary market. The retailer has a single opportunity to procure prior to a primary selling season consisting of multiple periods. Demand in each period is random, but correlated. At the end of each period, any remaining inventory incurs a holding cost. Then, based upon the current level of inventory and the cumulative demand-to-date, the retailer decides either to terminate the primary selling season by selling all or part of the remaining inventory on a secondary market, or to extend the current primary selling season by another period. We develop structural properties of the optimal policy for determining when to terminate the primary selling season, and we develop corresponding implications for procurement.  相似文献   
2.
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula CNPt(μ‐pz)2PtCN (where CN = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V).  相似文献   
3.
4.
5.
6.
In this paper, an efficient implementation of the spectral domain moment technique is presented for computing the self and mutual coupling between slot antennas on a dielectric half-space. It is demonstrated that by the proper selection of the weighting functions in the method of moments, the analytic evaluation or simplification of the transverse moment integrals is enabled. This results into a significant reduction of the required computational labor. The method is then utilized in order to provide design data for the self and mutual admittances between two slot antennas on a dielectric substrate lens in the case of fused quartz (∈ r =3.80), crystal quartz (∈ r =4.53), silicon (∈ r =11.9) and GaAs (∈ r =12.8). The presented technique and associated results are useful when designing twin slot quasi-optical receivers, imaging arrays, phased arrays or power-combining arrays of slot elements at millimeter-wave frequencies.  相似文献   
7.
This paper presents a model of heterogenous diffusion in capillary porous materials during the process of drying. The governing heat and mass transfer equations have been established using the liquid as well as vapor flow. Two models have been presented. Model 1 does not consider the heat conduction while the model 2 has been established by considering the conduction. The developed models and the numerical solutions of the resulting differential equations can take into account the moisture and temperature dependent thermophysical properties of the product. All equations have been established in spherical coordinates but the programme written for the purpose of calculations can be used for other geometries also. Numerical calculations have been performed for gas concrete and tiles using model 1, while model 2 has been used for gas concrete only because of the lack of data for thermophysical properties of the tile. For gas concrete it was seen that conduction has only marginal effect on the drying process and the numerical predictions of the drying process were reasonably accurate.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号