首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   0篇
工业技术   85篇
  2022年   4篇
  2021年   7篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   8篇
  2013年   7篇
  2012年   2篇
  2011年   8篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1976年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
1.

A temperature sensor based on photonic crystal structures with two- and three-dimensional geometries is proposed, and its measurement performance is estimated using a machine learning technique. The temperature characteristics of the photonic crystal structures are studied by mathematical modeling. The physics of the structure is investigated based on the effective electrical permittivity of the substrate (silicon) and column (air) materials for a signal at 1200 nm, whereas the mathematical principle of its operation is studied using the plane-wave expansion method. Moreover, the intrinsic characteristics are investigated based on the absorption and reflection losses as frequently considered for such photonic structures. The output signal (transmitted energy) passing through the structures determines the magnitude of the corresponding temperature variation. Furthermore, the numerical interpretation indicates that the output signal varies nonlinearly with temperature for both the two- and three-dimensional photonic structures. The relation between the transmitted energy and the temperature is found through polynomial-regression-based machine learning techniques. Moreover, rigorous mathematical computations indicate that a second-order polynomial regression could be an appropriate candidate to establish this relation. Polynomial regression is implemented using the Numpy and Scikit-learn library on the Google Colab platform.

  相似文献   
2.
Structural characterization of the material has been performed using micro-Raman spectroscopy, ultraviolet (UV) ellipsometry, electron microscopy and micro-photoluminescence (PL) studies on Si:H films prepared at a wide range of Ar dilution to the SiH4 plasma, defined by R(Ar)=Ar/SiH4 and varying from 10 to 400. Microcrystallization in Si:H network was easily obtained introducing Ar as a diluent, however, increasing Ar dilution revealed a continuous transformation of the network from microcrystalline to amorphous dominated structure. An overall amorphization of the network and its initiation by the presence of an enormously high void density (∼81 vol.%) in an extended incubation layer (∼163 nm) is the result of extremely high Ar dilution (R(Ar)∼400), on the formation of Si:H films. Increasing porosity in the amorphous dominated matrix resulted in a significant increase in the photoluminescence intensity, contributing to a photoluminescent Si:H material available from extremely high Ar dilution to the SiH4 plasma in rf glow discharge. Effect of Ar dilution inducing the growth morphology by controlling both the gas phase reactions and solid phase network modifications in Si:H network has been discussed.  相似文献   
3.
Industrial esthetic designers typically produce hand-drawn sketches in the form of orthographic projections. A subsequent translation from 2D-drawings to 3D-models is usually necessary. This involves a considerably time consuming process, so that some automation is advisable.  相似文献   
4.
A disadvantage of selective laser melting (SLM) processes for the manufacture of large parts is their slow build time per unit volume. A hybrid route is to generate core simple shapes traditionally, for example by machining, followed by adding final features by SLM. Here the mechanical integrity of such hybrid parts is studied, choosing the building of AlSi10Mg by SLM on a machined AA6082 base, in the shape of a tensile test piece, as a simple example. These materials are chosen for their relevance to lightweight parts. As-built parts fail at the SLM/machined interface but standard heat treatments transfer failures to the machined material. Optimised SLM processing conditions and microstructures of the SLM and interfacial regions are reported.  相似文献   
5.
Estimation of the direct radiative forcing (DRF) by atmospheric particles is uncertain to a large extent owing to uncertainties in their morphology (shape and size), mixing states, and chemical composition. A region-specific database of the aforementioned physico-chemical properties (at individual particle level) is necessary to improve numerically-estimated optical and radiative properties. Till date, there is no detailed observation of the above mentioned properties over Kanpur in the Indo-Gangetic Plain (IGP). To fill this gap, an experiment was carried out at Kanpur (IITK; 26.52°N, 80.23°E, 142 m msl), India from April to July, 2011. Particle types broadly classified as (a) Cu-rich particles mixed with carbon and sulphur (b) dust and clays mixed with carbonaceous species (c) Fe-rich particles mixed with carbon and sulfur and (d) calcite (CaCO3) particles aged with nitrate, were observed. The frequency distributions of aspect ratio (AR; indicator of extent of particle non-sphericity) of total 708 particles from April to June reveal that particles with aspect ratio range >1.2 to ≤1.4 were abundant throughout the experiment except during June when it was found to shift to high AR range, >1.4 to ≤1.6 (followed with another peak of AR i.e. >2 to ≤2.4) due to dust storm conditions enhancing the occurrence of more non-spherical particles over the sampling site. The spherical particles (and close to spherical shape; AR range, 1.0 to ≤1.2) were found to be <20% throughout the experiment with a minimum (11.5%) during June. Consideration of Homogeneous Equivalent Sphere Approximation (HESA) in the optical/radiative model over the study region is found to be irrelevant during the campaign.  相似文献   
6.
This study focused on isolation and identification of possible phosphate‐solubilizing bacteria (PSB ) from the sewage‐fed East Kolkata Wetland (EKWL ), a prospective water resource for pisciculture. In addition, different limnological parameters have been correlated with orthophosphate and seasonal variations. PSB have been isolated in Pikovskaya medium and identified morphologically and biochemically and finally analysed by 16S rDNA gene sequence. Limnological studies involving temperature (potentiometric), pH (potentiometric), dissolved oxygen (iodometric), ammonia‐nitrogen (spectrophotometric) and orthophosphate (spectrophotometric) concentrations were conducted. The results of this study established the presence of Bacillus megaterium , a potential PSB in EKWL . The activity of B. megaterium is also supported by the seasonal orthophosphate variations. The changes in concentration of other limnological parameters were also prominent. The water quality parameters of temperature (r  = 0.886), dissolved oxygen (r  = 0.729) and ammonia‐nitrogen (r  = 0.396) concentrations exhibited a positive correlation with orthophosphate and a negative correlation with pH (r  = ?0.699). The B. megaterium obtained in this study, exhibited a significant alteration in regard to orthophosphate content and relationships with other factors. Further experiment on the soluble phosphorus solubilization potential of B. megaterium revealed the biological availability of phosphorus was increased by threefold after 120 hr of incubation, with the decreasing pH value, although the phytase activity was 0.419 U/ml. PSB have a vital function in plant nutrition in supplying phosphate, essential nutrients and its uptake results in appropriate functioning and metabolism of different aquatic plants and organisms. PSB are competent biofertilizer to amplify aquaculture production for sustainable development.  相似文献   
7.
In this study, interpenetrating polymer network (IPN) hydrogel based on polyvinyl alcohol (PVA) networking with polyacrylic acid (PAA) were prepared by a non‐conventional emulsion method without any added crosslinker, using benzoyl peroxide as initiator and sodium chloride (NaCl) as additive. The IPN hydrogel was characterized by using Fourier transformed infrared (FTIR) spectrophotometry, Thermo gravimetric analysis (TGA), and Scanning electron microscopy (SEM). (PVA‐co‐PAA)/NaCl normal IPN hydrogel (H) were fabricated into hydrogel microspheres (HM) by modified emulsion crosslinking method using glutaraldehyde‐saturated toluene as crosslinker and were loaded with Diltiazem hydrochloride (DL). The IPN hydrogel showed more swelling in simulated intestinal fluid (SIF). (PVA‐co‐PAA)/NaCl HM formulation A1 showed comparatively higher DL entrapment (79%) and better control over DL release up to 24 h. By comparing antihypertensive activity of DL loaded two formulations in normotensive rats, HM formulation A1 found more effective in reducing blood pressure to 40.1%. The experimental results demonstrated that (PVA‐co‐PAA)/NaCl HM had the greater potential than normal hydrogel to be used as a drug carrier. A single use of the prepared hydrogel microsphere system of DL can effectively control hypertension in rats. The system holds promise for clinical studies. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
8.
9.
A series of novel electro-active conjugated polymers containing 2,5-dialkyl-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-diones (DPPs) and 3,4-dihydro-3,3-dialkyl-2H-thieno[3,4-b][1,4]dioxepines (dialkyl-ProDOTs) were synthesized using Stille coupling reaction in presence of CuO. The molecular weights of the synthesized polymers were found to be in the range of 18,000–45,000. Incorporation of the electron deficient DPP units and the electron rich dialkyl-ProDOT units in the conjugated backbone leads to low band gap polymers. All the polymers were found to be highly soluble in most chlorinated organic solvents as well THF and toluene with excellent film forming properties. From the UV–vis spectra, the band gap of the polymers was determined as 1.40–1.42 eV which is lower than the poly(dialkylProDOT)s. From the electrochemical study, highest occupied molecular orbital (HOMO) energy levels of the synthesized polymers were found to be in the range of 5.54–5.51 eV. Because of such high HOMO level, the resulting polymers were found to be more oxidatively stable. Polymers are thermally stable till 325–346 °C with only 5% weight loss which was confirmed from thermogravimetric analysis (TGA). The polymers were found to be moderately conducting with maximum conductivity up to 0.2–6.0 S/cm.  相似文献   
10.
Using argon as a diluent of SiH4, undoped hydrogenated microcrystalline silicon (μc-Si:H) films, having σD10−5 S cm−1, were prepared at a very high deposition rate of 36 Å/min. Micrograins were identified with several well-defined crystallographic orientations. The effect of variation of Ar-dilution on the electrical and structural properties of Si:H films were studied systematically. Addition of H2 to the Ar-diluted SiH4 plasma improved the network structure by eliminating defects, introducing structural reorientation and grain growth, although, reducing the deposition rate. Accordingly, highly conducting (σD10−3S cm−1) undoped μc-Si:H film was achieved utilizing energy released by de-excitation of metastable state of Ar (denoted as Ar*), in association with network modulation by atomic hydrogen in the plasma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号