首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   12篇
工业技术   170篇
  2023年   5篇
  2022年   15篇
  2021年   13篇
  2020年   11篇
  2019年   6篇
  2018年   15篇
  2017年   8篇
  2016年   5篇
  2015年   5篇
  2014年   14篇
  2013年   15篇
  2012年   9篇
  2011年   12篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1993年   1篇
  1989年   1篇
  1958年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
1.

Context

Formal methods are very useful in the software industry and are becoming of paramount importance in practical engineering techniques. They involve the design and modeling of various system aspects expressed usually through different paradigms. These different formalisms make the verification of global developed systems more difficult.

Objective

In this paper, we propose to combine two modeling formalisms, in order to express both functional and security timed requirements of a system to obtain all the requirements expressed in a unique formalism.

Method

First, the system behavior is specified according to its functional requirements using Timed Extended Finite State Machine (TEFSM) formalism. Second, this model is augmented by applying a set of dedicated algorithms to integrate timed security requirements specified in Nomad language. This language is adapted to express security properties such as permissions, prohibitions and obligations with time considerations.

Results

The proposed algorithms produce a global TEFSM specification of the system that includes both its functional and security timed requirements.

Conclusion

It is concluded that it is possible to merge several requirement aspects described with different formalisms into a global specification that can be used for several purposes such as code generation, specification correctness proof, model checking or automatic test generation. In this paper, we applied our approach to a France Telecom Travel service to demonstrate its scalability and feasibility.  相似文献   
2.
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.  相似文献   
3.
ABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin–Darby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter.  相似文献   
4.
The ability of microorganisms to grow at high temperature, alkaline pH, and high salinity makes them an attractive target for enzyme-production with several industrial applications. One strain TN-X30 has been selected as protease producer and identified as Streptomyces mutabilis after a phenotypic and molecular study. Its production of protease was improved using Taguchi L27 design. The strategy was carried out to identify the optimum levels and the interaction of the screened factors. Following this step, maximum protease activity (10,895 U/ml) was achieved after 6-days of incubation. The TN-X30 protease activity had an optimum of pH and temperature of 10 and 65°C, respectively. Thermodynamic parameters at 60°C were enthalpy 14.26 kJ/mol, entropy −220 J/mol/K, and Gibbs free energy 90.53 kJ/mol. TN-X30 protease production displayed a 16-fold increase reaching 175,000 U/ml in a 100-L fermentor. Furthermore, the lyophilization in presence of sorbitol enhanced the stability of the TN-X30 protease which remained active at 75% after 24-months of storage. The lyophilized TN-X30 protease exhibited exceptional stability indexes in presence of some known commercialized detergent components as NEODOL® 25-7, Dehydol® LT 7, Na2 CMC, Galaxy LAS, Galaxy LES 70, Galaxy 110, Galaxy CAPB Plus, and Sulfacid K. The lyophilized enzyme also displayed high stability with respect to both solid and liquid detergents. Finally, TN-X30 protease exhibited remarkable destaining of blood, egg, and chocolate stained cloth pieces. These findings may promote TN-X30 protease for use as bioadditive in detergent formulation, thereby reducing environmental chemical threat.  相似文献   
5.
A homologue series of sodium secondary n-alkanesulfonates (C14, C16 and C18) were obtained by photosulfochlorination process with two different reaction conditions. Different length chains with different isomeric distributions of n-alkanesulfonates are expected to present variations in physicochemical properties. In this investigation, the relationships between their isomeric distribution and their chain length and micellar behaviors were thoroughly explored. Their CMC at different temperatures were determined using specific conductivity and surface tension measurements. Through surface tension isotherms, the surface activities (??CMC) were obtained. The surface absorption amounts (??max) and the molecular areas (A min) were calculated using Gibb??s equation. As expected, these surfactants exhibit good surface properties. It was shown that the CMC values increase with increasing the percentage of secondary isomers, with a surface tension decrease. It was also shown that the CMC values decrease with increasing chain length. The HLB values were calculated for each surfactant and the results obtained suggest that they are O/W emulsifiers. The foam properties of synthesized surfactants were evaluated and compared to those obtained for commercial samples. It was shown that the foamability is influenced both by the length of the hydrophobic moiety and the percentage of secondary isomers. It can be easily concluded that the C14 sulfonates show the best foaming properties independently of their isomeric distribution. The Krafft point values obtained indicate that the micellization and the surfactant solubility mainly depend on the proportion of secondary isomers and the length of hydrophobic moiety.  相似文献   
6.
This paper reports the biomonitoring of metallic pollution in the mine of Sidi Kamber Skikda town, to determine the resistance and/or tolerance to Zn, Pb, Cd and Cu in metalliferous plants. During the period of March–May, 2015, soil and plants samples were collected from three different stations in the study area. The total heavy metal fraction was determined by ICP/MS, whereas biochemical markers were determined by spectrophotometric techniques. The results obtained showed high levels of heavy metals in soil and plants compared to international standards. The translocation factor revealed that the studied plants can transfer and/or accumulate metals in their roots or their aerial parts as a function of characteristics of each metal, soil contents and physiological role in the plant. The contents of chlorophyll, proline, total sugars and total proteins are directly influenced by changes in bioavailable contents of heavy metals. It has been found that the plants studied and biomarkers are better suited for phytoremediation and biomonitoring of heavy metals pollution.  相似文献   
7.
Multimedia Tools and Applications - A multi-scale analysis method, called Empirical Mode Decomposition (EMD), has been proposed for analysis of nonlinear and non stationary data. The empirical mode...  相似文献   
8.
9.
The resistance‐in‐series model was used to analyse flux behaviour, which involved the resistances of membrane itself, the fouling and solute concentration polarisation. Response surface methodology was used to establish the relationships between operating parameters and ultrafiltration (UF) efficiency and thus to determine optimal conditions. Experiments were performed according to Box–Behnken design by changing the levels of three parameters, namely transmembrane pressure, feed flow rate and temperature. The fitted mathematical models allowed us to plot isoresponse curves. It was shown that the resistance due to solute concentration polarisation (Rcp) dominated the flux decline (40–74%). The fouling resistance (Rf) varied from 12 to 46%. To optimise simultaneously the three responses studied (Rf, Rcp and permeate limit flux), we applied the desirability function approach which allowed us to determine the best acceptable compromise. The selected UF conditions of the compromise were as follows: three bars, 0.95 L min?1 and 30 °C. Optimal values of Rf, Rcp and permeate limit flux were equal to 18%, 72% and 19 L h?1 m?2, respectively.  相似文献   
10.
Next-generation cellular networks are expected to provide users with innovative gigabits and terabits per second speeds and achieve ultra-high reliability, availability, and ultra-low latency. The requirements of such networks are the main challenges that can be handled using a range of recent technologies, including multi-access edge computing (MEC), artificial intelligence (AI), millimeter-wave communications (mmWave), and software-defined networking. Many aspects and design challenges associated with the MEC-based 5G/6G networks should be solved to ensure the required quality of service (QoS). This article considers developing a complex MEC structure for fifth and sixth-generation (5G/6G) cellular networks. Furthermore, we propose a seamless migration technique for complex edge computing structures. The developed migration scheme enables services to adapt to the required load on the radio channels. The proposed algorithm is analyzed for various use cases, and a test bench has been developed to emulate the operator’s infrastructure. The obtained results are introduced and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号