首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
工业技术   7篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
2.
A series of novel Sm3+-doped LiY(MoO4)2 red phosphors under the UV excitation were synthesized by solid state reaction at 800 ℃ for 7 h. The data measured by X-ray diffraction (XRD) indicated that the samples were all pure phases of LiY(MoO4)2. Their excitation spectra had a broad band ranging from 250 to 350 nm and several sharp peaks. The centers of the peaks were located at about 365 nm (6H5/2→4D3/2), 378 nm (6H5/2→rp7/2), 406 nm (6H5/2→4FT/2), 420 nm (6H5/2→6ps/2), 442 nm (6H5/2→4Gg/2), 471 nm (6H5/2→4I13/2) and 482 nm (6H5/2→419/2), respectively. The strongest emission was excited by 406 nm, and the main emissions were located at 568 nm (4G5/2→6Hs/2), 610 nm (4Gs/2→rH7/2), 649 nm (4G5/2→6H9/2) and 710 nm (4Gs/2→6HII/2). Photoluminescence prop- erties were determined for various concentrations of Sm3+-doped LiY(MoO4)2 host, and the luminescence intensity had the best value when x=0.02 in LiYix(MoO4)2:xSm3+.  相似文献   
3.
采用高温固相法合成Sr3Y1--x(PO4)3∶xSm3+发光材料。X射线衍射表明,1 400℃高温烧制的Sr3Y(PO4)3荧光粉为纯相晶体结构。荧光粉的主激发峰为343、360、373、400、436和468nm;主发射峰为550~575nm(4 G5/2→6 H5/2)、580~620nm(4 G5/2→6 H7/2)和630~660nm(4 G5/2→6 H9/2)。荧光粉在599nm附近有很强的发射,呈现良好的红橙光,符合广泛应用的UV-LED芯片。研究了不同Sm3+掺杂量对样品发射谱的影响,发光强度随着Sm3+掺杂量的增大而增强。当掺杂量x=0.04时,发光强度最强。继续增大Sm3+掺杂量,样品的发光强度反而减弱,即出现浓度猝灭现象。根据Dexter理论,猝灭机理为离子之间的能量转移作用。  相似文献   
4.
采用高温固相法合成了Eu~(3+)激活的Ba_3La_6(SiO_4)_6红色荧光粉并对其发光性质进行了研究。XRD谱显示,合成样品为纯相Ba_3La_6(SiO_4)_6晶体。样品的激发光谱由一系列宽谱组成,峰值分别位于300、364、384、395、416和466nm,其激发主峰位于395nm。在395nm激发下,荧光粉在619nm(~5D_0→~7F_2)处有很强的发射。研究了不同Eu~(3+)掺杂浓度对样品发射光谱的影响。结果显示,随Eu~(3+)掺杂量的增大,发光强度先增大后减小。Eu~(3+)掺杂摩尔分数为13%时,出现浓度淬灭,其浓度淬灭机理为电偶极-电偶极相互作用。研究了不同Bi~(3+)掺杂量对Ba_3La_6(SiO_4)_6:Eu~(3+)发射光谱及色坐标的影响。Bi~(3+)掺杂样品中存在Bi~(3+)→Eu~(3+)的能量传递。  相似文献   
5.
为了得到发光效率较好的长波长红色荧光粉,采用高温固相法成功地合成了适合紫外激发的红色荧光粉Ca0.5-x Sr0.5MoO4:xSm3+,研究了其晶体结构和发光性质。X射线衍射(XRD)测量结果显示,制备的样品为纯相Ca0.5Sr0.5MoO4晶体。其激发光谱包括一个宽带峰和一系列尖峰,通过不同波长激发的发射谱和与Ca0.5-x Sr0.5MoO4:xEu3+的发射谱比较分析得出激发宽带为最有效激发带,归属于Mo6+-O2-的电荷迁移跃迁。在275nm的激发下,发射峰由峰值为564nm(4 G5/2→6 H5/2)、606nm(4 G5/2→6 H7/2)、647nm(4 G5/2→6 H9/2)、707nm(4 G5/2→6 H11/2)的4个峰组成,最大发射峰位于647nm处,呈现红光发射。Sm3+掺杂高于6%时Ca0.5-x Sr0.5MoO4:xSm3+出现浓度猝灭,分析表明,其猝灭机理是最邻近离子间的能量传递。同时,添加电荷补偿剂可增强材料的发射强度,以添加Na+的效果最明显。  相似文献   
6.
为了得到发光效率较好的长波长红色荧光粉,采用 高温固相法成功地合成了适合紫外激发的红色荧光粉 Ca0.5-xSr0.5MoO4:xSm3+,研究了其晶体结构和发 光性质。X射线衍射(XRD)测量结果显示,制备的样品为纯相Ca0.5Sr0.5MoO4晶体。其激发 光谱包括一个宽带峰和一系列尖峰,通过不同波长激发的发射谱和与Ca0. 5-xSr0.5MoO4:xEu3+的发射 谱比较分析得出激 发宽带为最有效激发带,归属于Mo6+-O2-的电荷迁移跃迁。在275nm的激发 下,发射峰由峰值为564nm(4G5/2→6H 5/2)、 606nm(4G5/2→6H7/2) 、647nm (4G5/2→6H9/2)、707nm(4G5/2→6H11/2)的4个峰组成,最大发射 峰位于647nm处,呈现红光 发射。Sm3+掺杂高于6%时Ca0.5-xSr0.5Mo O4:xSm3+出现浓度猝灭,分析表明,其猝灭机 理是最邻近离子间的能量传递。同时,添加电荷补偿剂可增强材料的发射强度,以添加Na +的效果最明显。  相似文献   
7.
利用高温固相法合成了KNaCa2(PO4)2∶Sm3+系列橙红色荧光粉,并对其发光性能进行了研究.样品的激发光谱在402 nm有很强的发射带,与近紫外LED芯片匹配.在402nm近紫外光激发下,KNaCa2(PO4)2∶Sm3+的发射光谱由3个峰组成,发射峰值位于569、601和648nm处,分别归属于Sm3+的4G5/2→ 6HJ/2(J=5,7,9)跃迁.随着Sm3+掺量的增加,样品发光强度先增强后减弱,当Sm3+掺量为0.02 mol时发光强度达到最大,浓度猝灭机理为电偶极-电偶极相互作用.分析了不同Sm3+掺杂浓度样品的荧光衰减时间,并研究了电荷补偿剂Li+对样品发光强度的影响.样品KNaCa1.96(PO4)2∶0.02Sm3+,0.02Li+发射光谱(402nm激发)的积分强度是商用红色荧光粉Y2O3∶Eu3+发射光谱(253 nm激发)的1.5倍.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号