首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
工业技术   14篇
  2024年   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2009年   1篇
  2007年   1篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
1.
UHPC的轴拉性能与裂缝宽度控制能力研究   总被引:6,自引:4,他引:2  
为研究3种类型超高性能混凝土(ultra-high performance concrete,简称UHPC)的轴拉应力-应变曲线及其裂缝宽度控制能力,包括高应变强化UHPC、低应变强化UHPC和应变软化UHPC.采用轴拉试验方法测试狗骨头形试件,得到UHPC的轴拉应力-应变曲线和缝宽-应变曲线.试验结果表明:高应变强化UHPC和低应变强化UHPC的轴拉应力-应变曲线均包括弹性段、应变强化段和应变软化段,应变软化UHPC只有弹性段和应变软化段;UHPC应变强化段和应变软化段的转折点是裂缝缓慢扩展和迅速扩展的临界点;提高UHPC的极限拉伸应变,即延长其应变强化段,有助于提高其裂缝宽度控制能力;高应变强化UHPC拉伸应变在0.42%之前,其裂缝宽度均小于0.05 mm.对比C50混凝土(极限应变、极限强度分别为0.012%、2.3 MPa),高应变强化UHPC优异的裂缝宽度控制能力避免了结构设计中受正常使用状态裂缝宽度验算限制的影响,同时可在钢筋屈服前与其全程协同工作,这使得钢筋增强高应变强化UHPC在某些需要对裂缝宽度进行严格控制的结构类型中具有很高的应用价值.  相似文献   
2.
研究了HCSA膨胀剂3种掺量(0%、3%、6%)下常温养护型超高性能混凝土(Ultra high performance concrete,UHPC)的圆环约束收缩性能,包括:(1)UHPC轴拉应力应变曲线测试;(2)根据GB/T50082的UHPC自由收缩实验;(3)根据ASTM C1581的UHPC圆环约束实验。结果表明,3种UHPC的极限拉伸应变均高于3 000με,28d总收缩值分别为1 005.6με、600.0με、462.2με,并且在圆环约束作用下转化为残余应变、弹性拉应变和塑性拉应变,其中塑性拉应变分别为700.4με、437.9με、389.9με。3种UHPC在拉伸应变达到1 000με时及圆环约束实验中均未发现0.01mm以上的可检测裂缝。基于拉伸实验和声发射损伤分析方法对UHPC进行应变分析,可知具有应变强化段的3种UHPC在圆环约束实验中的塑性变形以小于0.01mm的多点分布微裂纹形式存在。通过添加HCSA膨胀剂对常温养护型UHPC进行收缩补偿,可有效地降低UHPC自身的拉应力以及对原有结构的影响。  相似文献   
3.
为研究轻质砂对不同试件尺寸下超高性能混凝土(ultra high performance concrete,UHPC)拉伸应变强化性能的影响,采用轻质砂对原黄砂进行等体积替代,完成9组不同轻质砂体积率(0~35%)和不同试件厚度(30~100 mm)的单轴拉伸试验,并同步进行声发射实时探伤测试。结果表明:轻质砂体积率对UHPC弹性极限点对应应力和对应应变的影响较小,但轻质砂体积率由0增加到35%时,UHPC的极限抗拉强度和极限拉应变分别由10.6 MPa和2.35×10-3提高到了19.4 MPa和4.3×10-3;轻质砂体积率大于15%时,UHPC的应变强化程度得到显著提升,试件内部产生的损伤点数更多且分布更均匀,展现出良好的裂缝控制能力;在相同轻质砂体积率下,UHPC的应变强化程度随试件厚度的增加而降低,且试件内部的损伤点趋于集中,表现出明显的尺寸效应。  相似文献   
4.
塑管混凝土力学性能的研究   总被引:1,自引:0,他引:1  
为了提高桥梁柱状混凝土桥墩的耐久性,提出了塑管混凝土(plastic tube filled with concret,简称PTFC)的新概念,并选择HDPE管作为约束混凝土的材料.研究了PTFC的力学性能包括增强系数和应力一应变曲线,考虑了塑管壁厚以及核心混凝土强度等级等因素的影响.结果表明,塑管混凝土具有良好的延性和抗压强度.该结论为塑管混凝土的设计及应用提供了一定的基础理论依据.  相似文献   
5.
郭义庆  王俊颜 《工程力学》2024,50(4):151-160

为了更加快速、准确地获取超高性能混凝土(UHPC)材料的拉伸性能,该文基于切口梁四点弯曲试验获得的荷载-切口张开位移(CMOD)响应,提出了一种UHPC拉伸性能简化反演分析方法。该方法采用了考虑裂纹局部化的非线性铰模型和可描述拉伸应变硬化或应变软化特征的多折线UHPC受拉应力-应变关系。通过5种钢纤维掺量的UHPC切口梁弯曲试验和轴拉试验的验证以及模型参数分析表明:在切口梁弯曲响应的离散性较低时,提出的计算模型能够准确地预测应变硬化和应变软化UHPC的受拉初裂强度和极限强度;随弯曲响应的离散性增大,轴拉应力的预测值与实测值的偏差越大;特征长度及特征点数量对应变软化UHPC受拉应力-缝宽曲线预测结果的影响较小,但对于应变硬化UHPC,特征长度的增大和特征点的减少都会导致其极限强度预测值偏高。通过应用表明:采用基于荷载-CMOD响应的非线性铰模型预测UHPC的受拉性能具有较好的可行性。

  相似文献   
6.
为探究超轻质水泥基复合材料(ultra lightweight cement composite,ULCC)的基本力学性能及应力-应变曲线本构关系.以粉煤灰空心微珠为唯一轻质微集料,以水泥和硅灰为胶凝材料,以高效减水剂和减缩剂为外加剂,配制了钢纤维体积掺量为1%,表观密度介于1 250~1 550 kg/m3,轴心抗压强度介于47.9~70.0 MPa的4种不同密度等级的ULCC.对其分别进行单轴抗压和单轴抗拉试验,分别研究了ULCC的轴心抗压和轴心抗拉力学性能,测得了ULCC材料轴心抗压强度、轴心抗拉强度、弹性模量、泊松比及单轴抗压和单轴抗拉应力-应变曲线.结果表明:ULCC的抗压强度、抗拉强度和弹性模量均随密度的增加而增加; ULCC的轴心抗压强度和弹性模量与密度呈较强线性相关性.轴心抗拉试验结果表明ULCC抗拉应力-应变曲线关系呈现明显的峰后平台段,ULCC材料具有良好的拉伸变形能力.根据试验测得的ULCC单轴抗压和单轴抗拉应力-应变全曲线,建立了ULCC单轴抗压和单轴抗拉的分段式应力-应变本构方程.研究成果可为ULCC结构的设计和非线性有限元计算提供理论依据.  相似文献   
7.
通过对素混凝土和高密度聚乙烯(HDPE)管混凝土的轴压应力应变曲线的计算,得到了延性和韧性的表征参数--延性系数和应变能;研究了管壁厚度、核心混凝土强度对HDPE管混凝土延性和韧性的影响.结果表明,HDPE管混凝土的延性和韧性均远大于素混凝土,并随管壁厚度的增加显著提高;核心混凝土强度的增大只能有限提高HDPE管混凝土的韧性,并且会大大降低HDPE管混凝土的延性.  相似文献   
8.
超高性能轻质混凝土的弯曲性能研究   总被引:1,自引:0,他引:1  
本文主要以漂珠作为轻集料,制备出密度在1700-1950kg/m~3的超高性能轻质混凝土(Ultra High Performance Light-weight Concrete,简称UHPLC),对其进行四点弯曲试验,并根据ASTM C1609标准研究其弯曲性能。研究表明:密度范围在1700~1950kg/m~3的UHPLC,其抗压强度在78.8~114.2MPa;2%体积率钢纤维掺量的UHPLC在开裂后有明显的挠度硬化行为,表现出优异的抗弯性能;根据ASTM C1609测试指标,随着密度的增加,UHPLC的初裂强度、0.5mm挠度下的残余强度、2mm挠度下的残余强度、峰值强度、弯曲韧性均增加;U1900抗压强度、抗弯强度比抗弯强度分别为114.2MPa、22.4MPa、11.7k Pa/kg·m-3,其抗弯性能可达国家标准《活性粉末混凝土》RPC160水平,比抗弯强度超过RPC最高等级RPC180。  相似文献   
9.
为改善塑管混凝土结构的界面密闭性能,研究了在塑管?混凝土界面粘贴一种双面压敏胶带——Preprufe胶带的作用。通过界面黏结强度、界面渗水高度和界面透气性实验,测得塑管混凝土结构的界面黏结强度、界面渗水高度、气体压力?时间衰减曲线,推导出界面渗透指数。试验结果表明,界面黏结强度与粘贴胶带的宽度的关系可初步认为符合幂函数分布,压敏性粘合剂胶层与液态混凝土在硬化过程中形成的黏结强度远大于普通黏性层与塑管间的黏结强度。粘贴Preprufe胶带可显著提高塑管?混凝土界面抗渗能力。界面渗透指数随粘贴胶带的宽度增大呈明显的递减趋势,粘贴220 mm宽胶带的塑管混凝土试件界面渗透指数仅为基准塑管混凝土试件的2.86%。Preprufe双面压敏胶带在改善塑管?混凝土界面密闭性能上有良好的表现。在工程应用中可综合考虑所需效果和价格成本来选取粘贴胶带的宽度。   相似文献   
10.
超高性能轻质混凝土(ultra-high performance lightweight concrete,UHPLC)是一种由高强水泥浆体、漂珠和纤维组成的密度低于1 950 kg/m~3的新型水泥基结构材料。本文研究了不同养护制度及养护龄期对UHPLC抗压强度、轴拉力学性能和弯曲性能的影响,最后利用扫描电镜观察了UHPLC中漂珠的微观形貌。结果表明:随着龄期增长,UHPLC的抗压强度、轴拉性能和弯曲性能均提高,并出现明显的应变强化现象,说明养护龄期对UHPLC基体强度和纤维-UHPLC基体的界面黏结强度均有显著提高作用;高温蒸汽养护3 d可促进UHPLC基体早期强度发展,使UHPLC的抗压强度和弯曲性能迅速达到标准养护28 d时的水平,显著缩短养护龄期,但对纤维-基体界面黏结强度的贡献不大,黏结强度仍主要受龄期影响;UHPLC实测密度为1 815.2 kg/m~3,100 mm立方体抗压强度达103.1 MPa,极限抗拉强度达7.60 MPa,极限拉应变达0.431%,出现明显的应变强化现象,弯曲峰值强度达22.43 MPa,满足了RPC160的抗折强度要求,实现了水泥基结构材料轻质高强的目标。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号