首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
数理化   20篇
  2023年   1篇
  2021年   2篇
  2016年   1篇
  2012年   2篇
  2011年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  1999年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
Likely candidates for the lowest potential energy minima of (C60)nCa2+, (C60)nF and (C60)nI clusters are located using basin-hopping global optimisation. In each case, the potential energy surface is constructed using the Girifalco form for the C60 intermolecular interaction, an averaged Lennard–Jones C60–ion interaction, and a polarisation potential, which depends on the first few non-vanishing C60 multipole polarisabilities. We find that the ions generally occupy the interstitial sites of a (C60)n cluster, the coordination shell being tetrahedral for Ca2+ and F. The I ion has an octahedral coordination shell in the global minimum for (C60)6I, however for 12  n  8 the preferred coordination geometry is trigonal prismatic.  相似文献   
2.
Likely candidates for the lowest minima of water clusters (H(2)O)(N) for N ≤ 20 interacting with a uniform electric field strength in the range E ≤ 0.6 V/? have been identified using basin-hopping global optimization. Two water-water model potentials were considered, namely TIP4P and the polarizable Dang-Chang potential. The two models produce some consistent results but also exhibit significant differences. The cluster internal energy and dipole moment indicate two varieties of topological transition in the structure of the global minimum as the field strength is increased. The first takes place at low field strengths (0.1 V/? 10) usually forming helical structures.  相似文献   
3.
Hierarchically porous materials, such as wrinkled mesoporous silica (WMS), have gained interest in the last couple of decades, because of their wide range of applications in fields such as nanomedicine, energy, and catalysis. The mechanism of formation of these nanostructures is not fully understood, despite various groups reporting very comprehensive studies. Furthermore, achieving particle diameters of 100 nm or less has proven difficult. In this study, the effects on particle size, pore size, and particle morphology of several co-solvents were evaluated. Additionally, varying concentrations of acid during synthesis affected the particle sizes, yielding particles smaller than 100 nm. The morphology and physical properties of the nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and dynamic light scattering (DLS). Homogeneous and spherical WMS, with the desired radial wrinkle morphology and particle sizes smaller than 100 nm, were obtained. The effect of the nature of the co-solvents and the concentration of acid are explained within the frame of previously reported mechanisms of formation, to further elucidate this intricate process.  相似文献   
4.
A series of molecules, based on the smallest carbon cluster with one planar tetracoordinate carbon atom, C5(2-), are presented. To gain a better understanding about which electronic factors contribute to their stabilization, several global reactivity indexes, molecular scalar fields, and magnetic responses were calculated. The optimized bond lengths and the topological analysis of the electron density show that the central carbon atom in the parent dianion C5(2-) has a planar local environment, and it is coordinated to four other carbon atoms. The bonding of the parent dianion with the metal cations is highly ionic. The magnetic properties show that the C5(2-) derivatives are strongly diatropic and have a remarkable transferability of structural and electronic features from the anion to the salts. The theoretical analysis suggests that the lithium salt, C5Li2, is the most plausible candidate for experimental detection.  相似文献   
5.
The microcanonical analysis is shown to be a powerful tool to characterize the protein folding transition and to neatly distinguish between good and bad folders. An off-lattice model with parameter chosen to represent polymers of these two types is used to illustrate this approach. Both canonical and microcanonical ensembles are employed. The required calculations were performed using parallel tempering Monte Carlo simulations. The most revealing features of the folding transition are related to its first-order-like character, namely, the S-bend pattern in the caloric curve, which gives rise to negative microcanonical specific heats, and the bimodality of the energy distribution function at the transition temperatures. Models for a good folder are shown to be quite robust against perturbations in the interaction potential parameters.  相似文献   
6.
A kinetic Monte Carlo (KMC) method is used to study the structural properties and dynamics of a supercooled binary Lennard-Jones liquid around the glass transition temperature. This technique permits us to explore the potential energy surface without suffering an exponential slowing down at low temperature. We find a transition temperature that separates two distinct regimes around the dynamical transition temperature of mode-coupling theory. Below this temperature the number of different local minima visited by the system for the same number of KMC steps decreases by more than an order of magnitude. The mean number of atoms involved in each jump between local minima and the average distance they move also decreases significantly, and new features appear in the partial structure factor. At higher temperature the probability distribution for the magnitude of the atomic displacement per KMC step exhibits an exponential decay, which is only weakly temperature dependent.  相似文献   
7.
Basin-hopping global optimization is used to find likely candidates for the lowest minima on the potential energy surface of (C(60))(n)X (X=Li(+),Na(+),K(+),Cl(-)) and (C(60))(n)YCl (Y=Li,Na,K) clusters with n相似文献   
8.
The structures and bonding of the CE42?clusters (E = Al, Ga, In, Tl) have been theoretically studied via B3LYP/def2-TZVP computations. Total energies were recalculated at the CCSD(T)/def2-TZVPP//B3LYP/def2-TZVP level in order to corroborate the energy differences. Our computations show that all the CE42?and CE4Li?clusters (E = Al, Ga, In,Tl) have a planar tetracoordinate carbon structure. Interestingly, while the most stable form of CAl4Li? and CGa4Li? is planar with coordination of Li+ to an edge of the CE42? fragment, for CIn4Li? and CTl4Li? the pyramidal structures with C4v symmetry are the lowest-energy structures.  相似文献   
9.
Likely candidates for the global potential energy minima of C60(H2O)n clusters with n < or = 21 are found using basin-hopping global optimization. The potential energy surfaces are constructed using the TIP4P intermolecular potential for the water molecules, a Lennard-Jones water-fullerene potential, and a water-fullerene polarization potential, which depends on the first few nonvanishing C60 multipole polarizabilities. This combination produces a rather hydrophobic water-fullerene interaction. As a consequence, the water component of the lowest C60(H2O)n minima is quite closely related to low-lying minima of the corresponding TIP4P (H2O)n clusters. In most cases, the geometrical substructure of the water molecules in the C60(H2O)n global minimum coincides with that of the corresponding free water cluster. Exceptions occur when the interaction with C60 induces a change in geometry. This qualitative picture does not change significantly if we use the TIP3P model for the water-water interaction. Structures such as C60@(H2O)60, in which the water molecules surround the C60 fullerene, correspond to local minima with much higher potential energies. For such a structure to become the global minimum, the magnitude of the water-fullerene interaction must be increased to an unphysical value.  相似文献   
10.
We summarize our contributions on the quest of new planar tetracoordinate carbon entities (new carbon molecules with exotic chemical structures and strange bonding schemes). We give special emphasis on the rationalization why in this type of molecules the planar configuration is favored over the tetrahedral one. We will concentrate on the latter and will show that molecules containing planar tetracoordinate carbons have a stabilizing system of delocalized pi electrons, which shows similar properties as pi systems in aromatic molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号