首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
数理化   57篇
  2019年   1篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   8篇
  2009年   3篇
  2008年   1篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1976年   1篇
排序方式: 共有57条查询结果,搜索用时 533 毫秒
1.
The retarding-potential and LEED methods are used for obtaining information about the structure and uniformity of alkali (K and CS) and alkali-coadsorbate (CO and O) layers on Ru(0001) and Ru surfaces at 300 K. It was established that for alkali layers on the anisotropic Ru surface and for mixed coadsorbate layer the shape of the retarding potential curves, used for the work function measurements, becomes anomalous which indicates coexistence of patches of different work function on the surface. LEED data on these patchy surfaces showed the formation of a variety of ordered structures depending on the coadsorbate coverages. On the basis of the existing theory a simple mathematical simulation was performed in an attempt to interpret the observed changes in the retarding potential curves. The possible changes of this curves, induced by the formation of patches with varying contribution to the total retarding potential signal and the advantage of the retarding field method for determination the uniformity of surface overlayers are discussed.  相似文献   
2.
Vanadium oxide surface studies   总被引:4,自引:0,他引:4  
The vanadium oxides can exist in a range of single and mixed valencies with a large variety of structures. The large diversity of physical and chemical properties that they can thus possess make them technologically important and a rich ground for basic research. Here we assess the present status of the microscopic understanding of the physico-chemical properties of vanadium oxide surfaces. The discussion is restricted to atomically well-defined systems as probed by surface techniques. Following a brief review of the properties of the bulk oxides the electronic and geometric structure of their clean single crystal surfaces and adsorption studies, probing their chemical reactivity, are considered. The review then focuses on the growth and the surface properties of vanadium oxide thin films. This is partitioned into films grown on oxide substrates and those on metal substrates. The interest in the former derives from their importance as supported metal oxide catalysts and the need to understand the two-dimensional overlayer of the so-called “monolayer” catalyst. On the single crystal metal substrates thin oxide layers with high structural order and interesting properties can be prepared. Particular attention is given to ultrathin vanadium oxide layers, so-called nano-layers, where novel phases, stabilised by the substrate, form.  相似文献   
3.
The oxygen chemisorption on an alkali (Na, K, Cs) covered Ni(100) surface and its initial oxidation were studied by Auger and electron energy loss spectroscopy (ELS). It was found that in the presence of an alkali metal, the sticking coefficient S remains unity up to a given oxygen coverage of θOcwhose value depends on the alkali overlayer concentration and the ionicity of the Ni-alkali metal bond. At a given oxygen coverage, the line shapes of Auger and loss spectra are almost the same for alkali-covered and clean Ni(100), which suggests that alkali metals cause no change in the character of the Ni-O bond. The effect of alkali metals is associated with increasing electron charge in the surface region, which facilitates oxygen chemisorption. The enhanced surface oxygen concentration in the presence of an alkali metal results in the formation of an oxide phase at lower oxygen exposures than is the case of clean Ni surfaces.  相似文献   
4.
In the growth process of ultrathin films of vanadium oxides on Pd(111), a sequence of novel oxide phases with layer-dependent structures and oscillating oxidation states has been detected experimentally and understood theoretically. These phases are interface mediated and metastable with respect to further oxide growth. Transformation into the stable oxide configuration occurs beyond a critical thickness, where energetics combined with kinetic limitations determine the oxide multilayer structure.  相似文献   
5.
L. Surnev 《Surface science》1981,110(2):458-470
Oxygen adsorption on an alkali metal (a.m.)-covered Ge(111) surface has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (ELS), thermal desorption (TD), and work function measurements (WF). It was found that the presence of a.m. results in enhancement of the oxygen adsorption rate. The initial values of the sticking coefficient, S0, are exponential functions of the work function changes caused by the a.m. adsorption. It was shown that no germanium oxide phases are formed on an alkali-covered Ge surface at 300 K. The oxidation rate at high temperatures is limited by the rearrangement processes taking place in the surface GeO layer. The results obtained show that the alkali metal perturbs the GeO bond to a certain extent but no alkali oxide formation was observed at a.m. covertages under investigation.  相似文献   
6.
The adsorption of hydrogen on a palladium ribbon has been studied by thermal desorption and work function measurements. It has been established that several heating cycles of the sample covered with hydrogen, up to 700 K lead to the repeated appearance of hydrogen thermal desorption peaks. Analogous experiments of adsorption and repeated heating cycles up to 700 K have shown work function changes decrease to zero as a result of heating and an increase again almost up to the initial value following cooling, in a much shorter time than that required for adsorption. The experimental results show that only a small part of the adsorbed hydrogen is desorbed in the temperature range of the thermal desorption peak. The major part of adsorbed hydrogen penetrates below the surface which leads to a nonequilibium increase of the bulk concentration.  相似文献   
7.
The interaction of oxygen with Pd(111) has been studied by means of AES, ELS, thermal desorption (TD), electron stimulated desorption (ESD) and work function measurements. It was found that a very small part ( ~ 2–3%) of the available adsorption sites are contributing to the O+ electron stimulated yield, the population of the latter being accompanied by enormously large work function changes (up to ~ 0.9 eV). A mechanism of adsorption and depopulation of these sites involving oxygen bulk and surface diffusion has been proposed.  相似文献   
8.
The effect of adsorbed Na on the surface conductivity, Δσ, and surface recombination velocity, S, of a clean (114)Ge surface is studied. The surface conductivity is a complicated function of the surface Na concentration, NNa; at NNa ≈ 1.5 × 1013 atoms/cm2, it has a minimum; at ca. (3–5) × 1014atoms/cm2, it has a maximum. For a monolayer coverage (ca. 7.2 × 1014atoms/cm2) the values of Δσ are not much different from those of a clean Ge surface. The surface recombination velocity is a three-valued function of the surface potential, US (calculated from the Δσ values), depending on the Na overlayer coverage and heat treatment of the sample. Three different surface structures (LEED data) were found to correspond to the three S versus US curves reported here. Thermal desorption studies show that Na is desorbed in a wide temperature interval. Two peaks have been isolated, studied and discussed. At low coverages a single peak is found to exist, which obeys the first-order desorption kinetics, with a desorption energy of (52 ± 3)kcal/mol. This peak is attributed to the surface defects. For coverages close to14 monolayer a new peak was observed in the spectrum. The desorption energy of this binding state exceeds that of all the other states. When the overlayer coverage is increased, this peak is shifted to higher temperatures, as predicted for a half-order desorption kinetics. By comparing also with LEED data, it may be concluded that this most tightly bound sodium has formed on the Ge(111) surface patches of an ordered structure in which one Na atom is bonded to three Ge atoms.  相似文献   
9.
The electronic structure of a bare Rh(553) surface and of a Ni-decorated Rh(553) surface has been investigated by angle-resolved UV photoelectron spectroscopy and density functional theory calculations. The self-assembly of Ni adatoms leads to the decoration of the steps of the Rh(553) surface with monoatomic Ni rows under suitable kinetic conditions, thus forming a regular array of pseudomorphic bimetallic Ni–Rh nanowires. The electronic structure of the clean Rh(553) surface has been compared to the one of the flat Rh(111) surface, and additional surface states localized at the step edges due to the lower coordination of the step atoms have been detected. The Ni wires are weakly hybridized with the Rh substrate states and are characterized by only weakly dispersing states. This leads to a strong narrowing of the d-band, which is argued to be the origin of the observed high chemical reactivity of the Ni–Rh nanowires.  相似文献   
10.
The properties of bimetallic Ni-Rh nanowires, fabricated by decorating the steps of vicinal Rh(111) surfaces by stripes of self-assembled Ni adatoms, have been probed by STM, photoemission, and ab initio density functional theory calculations. These Ni-Rh nanowires have specific electronic properties that lead to a significantly enhanced chemical reactivity towards oxygen. As a result, the Ni-Rh nanowires can be oxidized exclusively, generating novel quasi-one-dimensional oxide structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号