首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
数理化   40篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有40条查询结果,搜索用时 16 毫秒
1.
High-level ab initio electronic structure calculations, including extrapolations to the complete basis set limit as well as relativistic and diagonal Born-Oppenheimer corrections, resulted in a torsional potential of acetaldehyde in its electronic ground state. This benchmark-quality potential fully reflects the symmetry and internal rotation dynamics of this molecule in the energy range probed by spectroscopic experiments in the infrared and microwave regions. The torsional transition frequencies calculated from this potential and the ab initio torsional inverse effective mass function are within 2 cm(-1) of the available experimental values. Furthermore, the computed contortional parameter rho of the rho-axis system Hamiltonian is also in excellent agreement with that obtained from spectral analyses of acetaldehyde.  相似文献   
2.
In this paper, the levels and the torsional microstates of hydrogen peroxide are determined from fully optimized ab initio calculations using a nuclear model in one dimension. Calculations have been performed at the MP2 level with the 6-311 G(2df,2pd), 6-31 1+G(2df,2pd), cc-pVTZ and AUG-cc-pVTZ basis sets including polarization orbitals and diffuse functions. The most stable conformation, calculated with the MP2/AUG-cc-pVTZ approach, is a transgauche conformer lying at 67.5° from the trans structure. By using the same level of calculations, the heights of the trans and cis barriers have been determined to be 386.5 and 2643.8 cm−1 in a good agreement with the experimental data. The variational torsional levels split into four components by the tunnelling effect of the barriers. The splitting of the fundamental level caused by the trans barrier has been found to be 11.8683 cm−1, whereas the splitting caused by the cis barrier is insignificant under n=2. Current ab initio energies confirm the experimental assignments and verify the separability of the torsion from the rest of the vibrations. However, the experimental relation of dependence on the torsion of the rotational constants cannot be reproduced in one-dimension and depends on several additional vibrational effects.  相似文献   
3.
The roto-torsional energy levels of HSSH and DSSD up to J = 20 are evaluated variationally with a Hamiltonian expressed in terms of internal coordinates. The kinetic and potential parameters are derived from ab initio calculations with full optimization of the geometry. The calculated levels are employed for the determination of the centrifugal distortion constants. HSSH is a near-prolate symmetric rotor. The most stable C(2) conformer, calculated with MP4(SDQ)/cc-pVQZ, exhibits a 90.55 degrees dihedral angle. For J = 0, the lowest energies of HSSH and DSSD are 413.4876 cm(-1) (n = 1), 798.0304 cm(-1) (n = 2) and 1151.5773 cm(-1) (n = 3), and 304.3185 cm(-1) (n = 1), 594.2919 cm(-1) (n = 2), and 869.3508 cm(-1) (n = 3), respectively. For J = 60, the ab initio calculations allow the reproduction of the anomalous type-K doubling predicted with perturbation theory. Copyright 2000 Academic Press.  相似文献   
4.
Torsional and rotational spectroscopic properties of pyruvic acid are determined using highly correlated ab initio methods and combining two different theoretical approaches: Second order perturbation theory and a variational procedure in three-dimensions. Four equilibrium geometries of pyruvic acid, Tc, Tt, Ct, and CC, outcome from a search with CCSD(T)-F12. All of them can be classified in the Cs point group. The variational calculations are performed considering the three internal rotation modes responsible for the non-rigidity as independent coordinates. More than 50 torsional energy levels (including torsional subcomponents) are localized in the 406–986 cm−1 region and represent excitations of the ν24 (skeletal torsion) and the ν23 (methyl torsion) modes. The third independent variable, the OH torsion, interacts strongly with ν23. The A1/E splitting of the ground vibrational state has been evaluated to be 0.024 cm−1 as it was expected given the high of the methyl torsional barrier (338 cm−1). A very good agreement with respect to previous experimental data concerning fundamental frequencies (νCAL − νEXP ~ 1 cm−1), and rotational parameters (B0CAL − B0EXP < 5 MHz), is obtained.  相似文献   
5.
Fast atom bombardment, combined with high-energy collision-induced tandem mass spectrometry, has been used to investigate gas-phase metal-ion interactions with captopril, enalaprilat and lisinopril, all angiotensin-converting enzyme inhibitors.Suggestions for the location of metal-binding sites are presented. For captopril, metal binding occurs most likely at both the sulphur and the nitrogen atom. For enalaprilat and lisinopril, binding preferably occurs at the amine nitrogen. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
6.
Electrospray mass spectrometry/mass spectrometry was used to investigate the gas‐phase properties of protonated expanded porphyrins, in order to correlate those with their structure and conformation. We have selected five expanded meso‐pentafluorophenyl porphyrins, respectively, a pair of oxidized/reduced fused pentaphyrins (22 and 24 π electrons), a pair of oxidized/reduced regular hexaphyrins (26 and 28 π electrons) and a regular doubly N‐fused hexaphyrin (28 π electrons). The gas‐phase behavior of the protonated species of oxidized and reduced expanded porphyrins is different. The oxidized species (aromatic Hückel systems) fragment more extensively, mainly by the loss of two HF molecules. The reduced species (Möbius aromatic or Möbius‐like aromatic systems) fragment less than their oxidized counterparts because of their increased flexibility. The protonated regular doubly fused hexaphyrin (non‐aromatic Hückel system) shows the least fragmentation even at higher collision energies. In general, cyclization through losses of HF molecules decreases from the aromatic Hückel systems to Möbius aromatic or Möbius‐like aromatic systems to non‐aromatic Hückel systems and is related to an increase in conformational distortion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
7.
The effects of intramolecular basis set superposition errors are less well documented than the corresponding intermolecular effects. The intramolecular basis set superposition errors are examined, using the approach of Jensen, for several basis sets developed by Pople and his co‐workers, which are widely used in studies of larger molecules. Prototype calculations are reported for the ground state of the water molecule using both the matrix Hartree–Fock method and the many‐body perturbation expansion for the correlation energy taken through second order. A similar investigation is carried out for some of the correlation consistent basis sets published by Dunning and his collaborators. Specifically, the following aspects are investigated: (i) the magnitude of the intramolecular basis set superposition error, (ii) the nonadditivity of intramolecular counterpoise corrections when applied in a pairwise fashion, and (iii) the use of multiple “ghost” centers. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 282–292, 2001  相似文献   
8.
9.
Highly correlated ab initio methods are used to predict the equilibrium structures and spectroscopic parameters of the SiC(3)H(-) anion. The total energies and physical properties are reported using CASSCF/MRCI, RCCSD(T), and RCCSD(T)-F12 approaches and extended basis sets. The search of stable geometries leads to a total of 12 isomers (4 linear and 8 cyclic), for which electronic ground states have close-shell configurations. The stability of the linear form, l-SiC(3)H(-), is prominent. For the most stable linear isomer, the B(e) equilibrium rotational constant has been calculated with RCCSD(T) and a complete basis set. Core-correlation and vibrational effects have been taken into account to predict a B(0) of 2621.68 MHz for l-SiC(3)H(-) and 2460.48 MHz for l-SiC(3)D(-). The dipole moment of l-SiC(3)H(-) was found to be 2.9707 D with CASSCF/aug-cc-pV5Z and the electron affinity to be 2.7 eV with RCCSD(T)-F12A/aug-cc-pVTZ. Anharmonic spectroscopic parameters are derived from a quadratic, cubic, and quartic RCCSD(T)-F12A force field and second order perturbation theory. CASSCF/MRCI vertical excitations supply three metastable electronic states, (1)Σ(+) (3)Σ(+) and (3)Δ. Electron affinities calculated for a series of chains type SiC(n)H and SiC(n) (n=1-5) allow us to discuss the anion formation probabilities.  相似文献   
10.
The ground and the electronically excited states of the C4 radical are studied using interaction configuration methods and large basis sets. Apart from the known isomers [l-C4(X(3)Sigmag (-)) and r-C4(X(1)Ag)], it is found that the ground singlet surface has two other stationary points: s-C4(X(1)Ag) and d-C4(X(1)A1). The d-C4 form is the third isomer of this cluster. The isomerization pathways from one form to the other show that deep potential wells are separating each minimum. Multireference configuration interaction studies of the electronic excited states reveal a high density of electronic states of these species in the 0-2 eV energy ranges. The high rovibrational levels of l-C4((3)Sigmau (-)) undergo predissociation processes via spin-orbit interactions with the neighboring (5)Sigmag + state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号