首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
数理化   29篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2006年   1篇
  2005年   1篇
  1996年   1篇
  1992年   1篇
  1987年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
In this study, the combination of parameters required for optimal extraction of anti-oxidative components from the Chinese lotus (CLR) and Malaysian lotus (MLR) roots were carefully investigated. Box–Behnken design was employed to optimize the pH (X1: 2–3), extraction time (X2: 0.5–1.5 h) and solvent-to-sample ratio (X3: 20–40 mL/g) to obtain a high flavonoid yield with high % DPPHsc free radical scavenging and Ferric-reducing power assay (FRAP). The analysis of variance clearly showed the significant contribution of quadratic model for all responses. The optimal conditions for both Chinese lotus (CLR) and Malaysian lotus (MLR) roots were obtained as: CLR: X1 = 2.5; X2 = 0.5 h; X3 = 40 mL/g; MLR: X1 = 2.4; X2 = 0.5 h; X3 = 40 mL/g. These optimum conditions gave (a) Total flavonoid content (TFC) of 0.599 mg PCE/g sample and 0.549 mg PCE/g sample, respectively; (b) % DPPHsc of 48.36% and 29.11%, respectively; (c) FRAP value of 2.07 mM FeSO4 and 1.89 mM FeSO4, respectively. A close agreement between predicted and experimental values was found. The result obtained succinctly revealed that the Chinese lotus exhibited higher antioxidant and total flavonoid content when compared with the Malaysia lotus root at optimum extraction condition.  相似文献   
2.
3.
Summary A functional form of the characteristic function of the sample median of three variates is shown to characterize the logistic distribution. A consequence of this is a characterization of the logistic in terms of the Laplace distribution. Research sponsored in part by the Air Force Office of Scientific Research, Air Force Systems Command, USAF under Grant No. AFOSR-77-3360. The United States Govenment is authorized to reproduce and distribute reprints for governmental purposes notwith-standing any copyright notation hereon.  相似文献   
4.
<正>The ability of Cocos nucifera L.water(CW) as non-toxic corrosion inhibitor for acid corrosion of aluminium in 0.5 mol/L HCl has been studied using chemical technique.CW shows significant inhibition as corrosion inhibitor,with 93%efficiency at the highest concentration of the inhibitor.The inhibitive action is attributed to the adsorption of the inhibitor molecules on metal surface following Langmuir adsorption isotherm.  相似文献   
5.
Chemical investigations into samples of Hunteria umbellata (K. Schum) collected in Osun State, Nigeria, led to the discovery of a new indole alkaloid, ikirydinium A, featuring an unprecedented 3-alkylpyridinium-indole-2-carboxylate scaffold. Ikirydinium A was found to exhibit antimicrobial activity (IC50 0.6 μM) against Bacillus subtilis ATCC 6051. The involvement of a common intermediate in the biosynthesis of ikirydinium A and vinblastine is hypothesized.  相似文献   
6.
Research on Chemical Intermediates - The use of computational methods such as density functional theory (DFT) in material design has attracted considerable attention aimed at achieving efficient...  相似文献   
7.
A magnetically recyclable eggshell-based catalyst (MKEC) was synthesized to circumvent saponification during the conversion of neem, Jatropha, and waste cooking oils (free fatty acid, 2.3–6.6%) to biodiesel. The characterization results indicated that MKEC had a mesoporous structure with the pore width of 3.24 nm, a specific surface area of 128 m2/g, and a pore volume of 0.045 cm3/g. The results confirmed that the MKEC is more tolerant to fatty acid poisoning than calcined eggshell. The effects of process parameters for maximum fatty acid methyl ester (FAME) content were evaluated by central composite design (CCD) and artificial neural network (ANN). The experimental FAME content of 94.5% was achieved for neem oil with a standard deviation (SD) of 0.68, which was in reasonable agreement with predicted values (CCD, 96.9%; ANN, 95.9%; SD, 0.73). The reusability studies showed that the mesoporous catalyst can be reused efficiently for five cycles without much deterioration in its activity.  相似文献   
8.
Journal of Thermal Analysis and Calorimetry - In the present work, a series of experiments were designed and conducted to prepare biodiesel from cottonseed oil and to blend it with octanol. The...  相似文献   
9.
Journal of Thermal Analysis and Calorimetry - In the original publication of the article, the affiliations of the third, fourth and fifth authors were incorrectly published.  相似文献   
10.
This study assessed the pyrolysis liquids obtained by slow pyrolysis of industrial hemp leaves, hurds, and roots. The liquids recovered between a pyrolysis temperature of 275–350 °C, at two condensation temperatures 130 °C and 70 °C, were analyzed. Aqueous and bio-oil pyrolysis liquids were produced and analyzed by proton nuclear magnetic resonance (NMR), gas chromatography–mass spectrometry (GC-MS), and atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS). NMR revealed quantitative concentrations of the most abundant compounds in the aqueous fractions and compound groups in the oily fractions. In the aqueous fractions, the concentration range of acetic acid was 50–241 gL−1, methanol 2–30 gL−1, propanoic acid 5–20 gL−1, and 1-hydroxybutan-2-one 2 gL−1. GC-MS was used to compare the compositions of the volatile compounds and APPI FT-ICR MS was utilized to determine the most abundant higher molecular weight compounds. The different obtained pyrolysis liquids (aqueous and oily) had various volatile and nonvolatile compounds such as acetic acid, 2,6-dimethoxyphenol, 2-methoxyphenol, and cannabidiol. This study provides a detailed understanding of the chemical composition of pyrolysis liquids from different parts of the industrial hemp plant and assesses their possible economic potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号