首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   708篇
  免费   32篇
数理化   740篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   14篇
  2019年   21篇
  2018年   12篇
  2017年   7篇
  2016年   18篇
  2015年   12篇
  2014年   28篇
  2013年   37篇
  2012年   47篇
  2011年   47篇
  2010年   19篇
  2009年   18篇
  2008年   51篇
  2007年   50篇
  2006年   45篇
  2005年   35篇
  2004年   38篇
  2003年   41篇
  2002年   35篇
  2001年   10篇
  2000年   10篇
  1999年   6篇
  1998年   5篇
  1997年   9篇
  1996年   13篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1986年   1篇
  1985年   10篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有740条查询结果,搜索用时 0 毫秒
1.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
2.
Treatment of norbornene, norbornadiene, benzonorbornadiene, and chloro- and methoxy-benzonorbornadiene with thallium(III) acetate in methanol affords only the corresponding cis-exo-acetoxythallation adducts in a sharp contrast to oxymercuration of such strained olefins where methoxymercuration prevails. In the cases of substituted benzonorbornadienes the products are obtained as the regioisomeric mixtures, the isomer ratio being determined by 13C NMR. In the cases of 5-norbornene-2,3-dicarboxylic anhydride, 5-norbornene-2-methyl-2,3-dicarboxylic anhydride, and 5-norbornen-2-endo-carboxylic acid, lactonization occurs to give a trans-oxythallation adduct having a lactone ring, no introduction of either methoxy or acetoxy groups being observed. 1H and/or 13C NMR data for several new oxythallation adducts are provided. The alkaline sodium borohydride reduction of adducts in methanol affords mainly the parent olefin together with 10–16% yields of the corresponding exo-alcohol.  相似文献   
3.
The polymerization of vinyl monomer initiated by an aqueous solution of poly(vinylbenzyltrimethyl)ammonium chloride (Q-PVBACI) was carried out at 85°C. Styrene, p-chlorostyrene, methyl methacrylate, and i-butyl methacrylate were polymerized, whereas acrylonitrile and vinyl acetate were not. The effects of the amounts of vinyl monomer, Q-PVBACI, and water on the conversion of vinyl monomer were studied. The overall activation energy in the polymerization of styrene was estimated as 79.1 kJ mol?1. The polymerization proceeded through a radical mechanism. The selectivity of vinyl monomer was discussed by “a concept of hard and soft hydrophobic areas and monomers.”  相似文献   
4.
The self-assembly behavior of a fullerene-based surfactant, C60(CH3)5K, in water was studied using a combination of static and dynamic light scattering, as well as transmission electron microscopy, and compared to that of the compound C60(C6H5)5K. Both fullerene surfactant systems spontaneously assemble into large vesicles consisting of closed spherical shells formed by bilayers, with critical aggregation concentrations (CAC) lower than 10(-6) g ml(-1). At low concentrations, the aggregate sizes of C60(CH3)5K (radius R approximately 26.8 nm) and C60(C6H5)5K (R approximately 17.0 nm) were found to be substantially different from each other, showing that the change of the substituents surrounding the polar cyclopentadienide head group makes it possible to control the size of the resulting aggregates. Furthermore, the C60(CH3)5K vesicles were found to exist in two qualitatively different types of aggregation with a critical reaggregation concentration (CRC) located at 3.30 x 10(-6) g ml(-1). Above the CRC, larger aggregates were observed (R approximately 37.6 nm), showing a more complex form of supramolecular aggregation, e.g., in terms of multi-bilayer vesicles and/or of clusters of bilayer vesicles.  相似文献   
5.
The reaction of conjugated dienes such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2,5-dimethyl-2,4-hexadiene, 1,3-cyclopentadiene, and 1,3-cyclohexadiene, with thallium(III)acetate in acetic acid at 10–65° for 0.5–15 hr affords an isomeric mixture of the corresponding diacetoxyalkenes (1,2- and 1,4-addition products) in 10–92% yields. The 1,2-addition products are predominantly formed in all cases examined except the case of 1,3-cyclopentadiene. The reaction is assumed to proceed through acetoxythallation and dethallation steps, the latter step being accompanied and/or followed by an attack of acetoxyl group. An initial attack of thallium moiety is proposed to occur mainly at C-1 and C-2 carbons in the cases of linear terminal dienes and cyclic dienes, respectively.  相似文献   
6.
In this study, a novel potentiometric titration of hydroperoxide in degraded polypropylene (PP) is proposed. This titration is quite sensitive compared with the conventional ones such as UV and manual titrations, and its detection limit was about 2 meq/kg. The sensitivity was equal to that of molecular weight measurement by GPC for the degraded PP and, in addition, the volatilization behavior of the hydroperoxide could be detected. This titration was found to be very effective for the determination of PP degradation.  相似文献   
7.
The structure and rheological properties of a poly(dimethylsiloxane)-graft-poly(oxyethylene) copolymer at high concentrations in block-selective solvents were studied by small-angle X-ray scattering (SAXS) and rheometry. Analysis of SAXS data indicates that quasispherical, reverse micellar aggregates (with no ordered packing) are present in concentrated solutions of the copolymer in nonpolar solvents, and that upon addition of water, the size of such aggregates increases due to the solubilization inside the micellar cores. The viscosity of concentrated polymer solutions increases exponentially as water is added, and finally, viscoelastic, gel-like behavior is found in the vicinity of the phase separation limit. It was found that small silver nanoparticles with an average diameter of ≈3 nm can be synthesized inside the copolymer aggregates without the need of a reducing agent; namely, particles embedded in a viscoelastic matrix are obtained. The synthesis seems to follow first-order kinetics. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
8.
9.
The binding of a dimeric form of the 2-amino-1,8-naphthyridine derivative (naphthyridine dimer) to a human telomeric sequence, TTAGGG, was investigated by UV melting, CD spectra, and CSI-MS measurements. Both the 9-mer d(TTAGGGTTA) and the 15-mer d(TTAGGGTTAGGGTTA) showed apparent melting temperatures (T(m)) of 45.6 and 63.6 degrees C, respectively, in the presence of naphthyridine dimer (30 microM) in sodium cacodylate buffer (50 mM, pH 7.0) containing 100 mM NaCl. The CD spectra at 235 and 255 nm of the 9-mer increased in intensity accompanied with strong induced CDs at 285 and 340 nm upon complex formation with naphthyridine dimer. UV titration of the binding of naphthyridine dimer to the 9-mer at 320 nm showed a hypochromism of the spectra. A Scatchard plot of the data showed the presence of multiple binding sites with different association constants. Cold spray ionization mass spectrometry of the complex between naphthyridine dimer and the 9-mer clearly showed that one to three molecules of the ligand bound to the dimer duplex of the 9-mer. Telomeric repeat elongation assay showed that the binding of naphthyridine dimer to the telomeric sequence inhibits the elongation of the sequence by telomerase.  相似文献   
10.
Amyloid fibrils mainly consist of 40-mer and 42-mer peptides (Abeta40, Abeta42). Abeta42 is believed to play a crucial role in the pathogenesis of Alzheimer's disease because its aggregative ability and neurotoxicity are considerably greater than those of Abeta40. The neurotoxicity of Abeta peptides involving the generation of free radicals is closely related to the S-oxidized radical cation of Met-35. However, the cation's origin and mechanism of stabilization remain unclear. Recently, structural models of fibrillar Abeta42 and Abeta40 based on systematic proline replacement have been proposed by our group [Morimoto, A.; et al. J. Biol. Chem. 2004, 279, 52781] and Wetzel's group [Williams, A. D.; et al. J. Mol. Biol. 2004, 335, 833], respectively. A major difference between these models is that our model of Abeta42 has a C-terminal beta-sheet region. Our biophysical study on Abeta42 using electron spin resonance (ESR) suggests that the S-oxidized radical cation of Met-35 could be generated by the reduction of the tyrosyl radical at Tyr-10 through a turn structure at positions 22 and 23, and stabilized by a C-terminal carboxylate anion through an intramolecular beta-sheet at positions 35-37 and 40-42 to form a C-terminal core that would lead to aggregation. A time-course analysis of the generation of radicals using ESR suggests that stabilization of the radicals by aggregation might be a main reason for the long-lasting oxidative stress of Abeta42. In contrast, the S-oxidized radical cation of Abeta40 is too short-lived to induce potent neurotoxicity because no such stabilization of radicals occurs in Abeta40.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号