首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   6篇
数理化   144篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   7篇
  2014年   6篇
  2013年   5篇
  2012年   10篇
  2011年   7篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   2篇
  1994年   3篇
  1992年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
1.
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - Natural circulation loop (NCL) is a geometrically simple heat transfer device in which fluid flow occurs due to density gradient of loop fluid, induced...  相似文献   
3.
Precise assessment of temperature is crucial in many physical, technological, and biological applications where optical thermometry has attracted considerable attention primarily due to fast response, contactless measurement route, and electromagnetic passivity. Rare-earth-doped thermographic phosphors that rely on ratiometric sensing are very efficient near and above room temperature. However, being dependent on the thermally-assisted migration of carriers to higher excited states, they are largely limited by the quenching of the activation mechanism at low temperatures. In this paper, we demonstrate a strategy to pass through this bottleneck by designing a linear colorimetric thermometer by which we could estimate down to 4 K. The change in perceptual color fidelity metric provides an accurate measure for the sensitivity of the thermometer that attains a maximum value of 0.86 K−1. Thermally coupled states in Er3+ are also used as a ratiometric sensor from room temperature to ∼140 K. The results obtained in this work clearly show that Yb3+−Er3+ co-doped NaGdF4 microcrystals are a promising system that enables reliable bimodal thermometry in a very wide temperature range from ultralow (4 K) to ambient (290 K) conditions.  相似文献   
4.
In the present work, a controlled growth of ZnO nanostructures by manipulating Zn metal ion concentration by the chelating action of ethylene diaminetetra acetic acid in hydrothermal method is studied. EDTA produces metal–chelate complex by the formation of bidentate ligand with Zn2+ in the solution and diminishes the reactivity of Zn metal cations. Concentration of EDTA in the mother solution was varied in different ranges like 3, 5 and 10 mM while retaining the zinc metal salt and the NaOH concentration the same. Three different morphologies of wurtzite structured ZnO nanostructures such as nanorods-bunch, separate/discrete uniformly sized hexagonal nanorods and tapered flower petals like shapes are achieved by 3, 5 and 10 mM strengths of EDTA, respectively. The medium concentration 5 mM of EDTA is found to have moderate control over producing ZnO nanostructures of uniform diameter and a high aspect (length to diameter) ratio. An array of vertically aligned free standing ZnO nanorods with uniform spacing is successfully achieved by the addition of 5 mM of EDTA in the mother solution and the same is studied for its fluorescence property at an excitation of 325 nm and it has exhibited a characteristic UV emission of ZnO around 383 nm.  相似文献   
5.
A lithium-rich nickel-manganese oxide compound Lix(Ni0.25Mn0.75)Oy (x > 1) was synthesized from layered Na0.9Li0.3Ni0.25Mn0.75Oδ precursor using a lithium ion-exchange reaction. The electrochemical behavior of the material as a cathode for lithium batteries, and a preliminary discussion of its structure are reported. The product Li1.32Na0.02Ni0.25Mn0.75Oy (IE-LNMO) shows broad X-ray diffraction peaks, but possesses a high intensity sharp (003) layering peak and multiple peaks with intensity in the 20–23° 2θ region which suggest Ni–Mn ordering in the transition metal layer (TM). Li/IE-LNMO cells demonstrate very stable reversible capacities of 220 mAh/g @ 15 mA/g and possess extremely high power of 150 mAh/g @ 1500 mA/g (15C). The Li/IE-LNMO cell dQ/dV plot exhibits three reversible electrochemical processes due to Ni/Mn redox behavior in a layered component, and Mn redox exchange in a spinel component. No alteration in the dQ/dV curves and no detectable change in the voltage profiles over 40 cycles were observed, thus indicating a stable structure for lithium insertion/extraction. This new material is attractive for demanding Li-ion battery applications.  相似文献   
6.
This article describes a green synthetic approach to prepare water dispersible perovskite‐type Eu3+‐doped KZnF3 nanoparticles, carried out using environmentally friendly microwave irradiation at low temperature (85 °C) with water as a solvent. Incorporation of Eu3+ ions into the KZnF3 matrix is confirmed by strong red emission upon ultraviolet (UV) excitation of the nanoparticles. The nanoparticles are coated with poly(acrylic acid) (PAA), which enhances the dispersibility of the nanoparticles in hydrophilic solvents. The strong red emission from Eu3+ ions is selectively quenched upon addition of CuII ions, thus making the nanoparticles a potential CuII sensing material. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA), with recovery of almost 90 % of the luminescence. If the nanoparticles are strongly attached to a positively charged surface, dipping the surface in a CuII solution leads to the quenching of Eu3+ luminescence, which can be recovered after dipping in an EDTA solution. This process can be repeated for more than five cycles with only a slight decrease in the sensing ability. In addition to sensing, the strong luminescence from Eu3+‐doped KZnF3 nanoparticles could be used as a tool for bioimaging.  相似文献   
7.
Heavy metal fluorides like BiF3 as a host for lanthanide ions are of interest as bismuth is the only heavy metal that is nontoxic. In this work, we report the synthesis of highly water‐dispersible ultrasmall BiF3 nanoparticles about 6 nm in size within a poly(vinyl pyrrolidone) matrix by a hydrothermal method. Microscopy analysis reveals that the nanoparticles are well separated and confined within the polymer network. These nanoparticles were found to be excellent hosts for lanthanide (Ln3+) ions. Through suitable Ln3+ doping, BiF3 exhibits strong emissions in the visible region upon both UV and near infrared (NIR) excitations. The non‐toxicity of both bismuth and PVP can be advantageous for the potential use of BiF3 nanoparticles in drug delivery and bioimaging.  相似文献   
8.
9.
10.
Polychlorinated biphenyls (PCBs) are harmful even at trace level in the environment, and they are difficult to detect. This work presents a simple method for preparation of glutathione (GSH) functionalized gold nanoparticles (Au NPs) (GSH-Au NPs) for the detection of PCBs and its isomers based on surface enhanced Raman scattering (SERS). The prepared Au NPs show the surface plasmon band around 533 nm. The crystallinity and formation of GSH-Au NPs were confirmed by using X-ray diffraction and vibrational studies. Transmission electron microscopic analysis showed the average particle size of GSH-Au NPs is around 16 nm. The morphology of the GSH-Au NPs indicates dumbbell-shaped structures with “hot spots” present. These hot spots increase the SERS activity significantly. Gas chromatography–mass spectrum showed that the soil extract contained PCBs, which, has also been detected using SERS. SERS based detection is simple and powerful for identifying the PCBs, as established here for PCBs in the real soil sample.Hence, from this investigation, a rapid, sensitive, cost-effective sensing method for detecting toxic PCBs in the environment was demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号