首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  国内免费   1篇
数理化   39篇
  2023年   1篇
  2019年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2004年   3篇
  2003年   2篇
  2000年   1篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1993年   3篇
  1990年   2篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1965年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Two new hereditary classes of P5-free graphs where the stability number can be found in polynomial time are proposed. They generalize several known results.  相似文献   
2.
It has been previously shown that a metabolite of piroxicam but not piroxicam itself causes phototoxicity to cells in vitro after exposure to UVA (320–400 nm) radiation. The phototoxicity mechanism for this metabolite, 2-methyl-4-oxo-2H-l,2-benzothiazine-l,l-dioxide (Compound I), was investigated. In vitro phototoxicity to human mononuclear cells was assayed using 0.5 m M Compound I and UVA radiation. The UVA fluence required for phototoxicity of Compound I was lower by a factor of 2-3 in D2O buffer compared to H2O buffer. Superoxide dismutase and mannitol, which remove O2- and OH", respectively, do not decrease the phototoxicity. The photodecomposition of Compound I was inhibited by sodium azide, enhanced by human serum albumin and unaffected by mannitol. Stable photoproducts of Compound I were not toxic to the cells. The quantum yield of singlet oxygen based on its emission at 1270 nm was 0.19 and 0.35 for Compound I and s2 ± 10-3 and 10-2 for piroxicam in D2O and C6H6, respectively. While the extremely low quantum yield for singlet oxygen from piroxicam appears to account for its lack of phototoxicity, the phototoxicity mechanism for its metabolite, Compound I, most likely does involve singlet oxygen.  相似文献   
3.
§1 IntroductionLet G be a graph with vertex-set V(G) ={ v1 ,v2 ,...,vn} .A labeling of G is a bijectionL:V(G)→{ 1,2 ,...,n} ,where L (vi) is the label of a vertex vi.A labeled graph is anordered pair (G,L) consisting of a graph G and its labeling L.Definition1.An increasing nonconsecutive path in a labeled graph(G,L) is a path(u1 ,u2 ,...,uk) in G such thatL(ui) + 1相似文献   
4.
This review summarizes research on many of the potential applications of photosensitized crosslinking of tissue proteins in surgery and current knowledge of the photochemical mechanisms underlying formation of the covalent protein–protein crosslinks involved. Initially developed to close wounds or reattach tissues, protein photocrosslinking has also been demonstrated to stiffen and strengthen tissues, decrease inflammatory responses and facilitate tissue bioengineering. These treatments appear to result largely from crosslinks within and between collagen molecules in tissue that typically form by an oxygen‐dependent mechanism. Surgical applications discussed include sealing wounds in skin, cornea and bowel; reattaching severed nerves, blood vessels and tendons; strengthening cornea and vein; reducing capsular contracture after breast implants; and regenerating joint cartilage.  相似文献   
5.
Photosensitized protein cross‐linking has been recently developed to seal wounds and strengthen tissue. Although the photosensitizing dye, Rose Bengal (RB), is phototoxic to cultured cells, cytotoxicity does not accompany RB‐photosensitized tissue repair in vivo. We investigated whether the environment surrounding cells in tissue or the high irradiances used for photo–cross‐linking inhibited RB phototoxicity. Fibroblasts (FB) grown within collagen gels to mimic a tissue environment and monolayer cultured FB were treated with RB (0.01–1 mm ) and the high 532 nm laser irradiances used in vivo for tissue repair (0.10–0.50 W cm?2). Monolayer FB were substantially more sensitive to RB photosensitization: the LD50 was >200‐fold lower than that in collagen gels. Collagen gel protection was associated with increased Akt phosphorylation, a prosurvival pathway. RB phototoxicity in collagen gels was 25‐fold greater at low (0.030 W cm?2) that at high (0.50 W cm?2) irradiances. Oxygen depletion at high irradiance only partially accounted for the irradiance dependence of phototoxicity as replacing air with nitrogen only increased the LD50 by four‐fold in monolayers. These results indicate that the lack of RB phototoxicity during in vivo tissue repair results from upregulation of prosurvival pathways in tissue cells, oxygen depletion and irradiance‐dependent RB photochemistry.  相似文献   
6.
7.
Abstract— An instrument designed for convenient determination of action spectra for cutaneous photo-responses in man and experimental animals is described. Light from 450 W Xe lamp is dispersed by a concave holographic grating. The spectrum from 244 to 616 nm is projected as a planar strip (2 times 17 cm) intercepted by a grid with 31 ports. The bandwidth at each port is 12 nm and the size of the port increases from about 4 × 4 mm to 6 × 8 mm from the low to high wavelength limits, respectively. Typical fluence rates in quanta m-2 s-1 are 4.0 times 1019 at 298 nm, 16 times 1019 at 394nm and 22 times 1019 at 538 nm. Responses due to delayed erythema in normal skin and to musk ambrette photoallergy and solar urticaria in patients skin have been elicited with this instrument.  相似文献   
8.
UV-INDUCED PROTEIN ALTERATIONS AND LIPID OXIDATION IN ERYTHROCYTE MEMBRANES   总被引:3,自引:0,他引:3  
Certain ultraviolet radiation-induced effects in skin may result from primary photochemical alterations in cell membranes. We have studied isolated erythrocyte membranes in order to determine the UV-fluence and wavelength dependence for protein alterations and lipid oxidation. Protein crosslinking was detected as high molecular weight protein (greater than 200,000 DA) on polyacrylamide/agarose gel electrophoresis. Spectrin decreased more rapidly than the other membrane proteins upon exposure to lambda = 250-380 nm radiation. Nitrogen-purging inhibited the UV-induced decrease in spectrin by 60% and decreased crosslinking to an even greater degree. The decrease in spectrin was not inhibited by superoxide dismutase, catalase, or sodium azide. Radiation at 280 nm was most effective for spectrin loss, 265 and 297 nm were less effective and 254 and 313 nm were not effective. Prior irradiation at 280 nm did not sensitize the membranes to subsequent irradiation at 313 nm indicating that photodecomposition products of tryptophan are not involved. Lipid photooxidation was measured with the thiobarbituric acid assay and was induced at higher fluences of UV radiations than those required for loss of spectrin. These results indicate that the major effects of UV radiation on cell membranes are alterations of proteins and suggest that tryptophan is the major chromophore for these alterations.  相似文献   
9.
Singlet oxygen (1O2) is unique amongst reactive oxygen species formed in cells in that it is an excited state molecule with an inherent upper lifetime of 4 micros in water. Whether the lifetime of 1O2 in cells is shortened by reactions with cellular molecules or reaches the inherent maximum value is still unclear. However, even with the maximum lifetime, the diffusion radius is only approximately 220 nm during three lifetimes (approximately 5% 1O2 remaining), much shorter than cellular dimensions indicating that the primary reactions of 1O2 will be subcellularly localized near the site of 1O2 formation. This fact has raised the question of whether spatially resolved cellular responses to 1O2 occur, i.e. whether responses can be initiated by generation and reaction of 1O2 at a particular subcellular location that would not have been produced by 1O2 generation at other subcellular sites. In this paper, we discuss examples of spatially resolved responses initiated by 1O2 as a function of distance from the site of generation of 1O2. Three levels are recognized, namely, a molecular level where the primary oxidation product directly modifies the behavior of a cell, an organelle level where the initial photo-oxidation products initiate mechanisms that are unique to the organelle and the cellular level where mediators diffuse from their site of formation to the target molecules that initiate the response. These examples indicate that, indeed, spatially resolved responses to 'O2 occur in cells.  相似文献   
10.
Singlet oxygen (1O2)-induced cytotoxicity is believed to be responsible for responses to photodynamic therapy and for apoptosis of T helper cells after UV-A treatment. Other cytotoxic oxidants, such as hydrogen peroxide and peroxynitrite have been shown to stimulate cell survival signaling pathways in addition to causing cell death. Both these oxidants stimulate the Akt/protein kinase B survival signaling pathway through activation of membrane tyrosine kinase growth factor receptors. We evaluated the ability of 1O2 to activate the Akt/protein kinase B pathway in NIH 3T3 cells and examined potential activation pathways. Exposure of fibroblasts to 1O2 elicited a strong and sustained phosphorylation of Akt, which occurred concurrently with phosphorylation of p38 kinase, a proapoptotic signal. Inhibition of phosphatidylinositol-3-OH kinase (PI3-K) completely blocked Akt phosphorylation. Significantly, cell death induced by 1O2 was enhanced by inhibition of PI3-K, suggesting that activation of Akt by 1O2 may contribute to fibroblast survival under this form of oxidative stress. 1O2 treatment did not induce phosphorylation of platelet-derived growth factor receptor (PDGFR) or activate SH-PTP2, a substrate of growth factor receptors, suggesting that PDGFR was not activated. In addition, specific inhibition of PDGFR did not affect Akt phosphorylation elicited by 1O2. Activation of neither focal adhesion kinase (FAK) nor Ras protein, both of which mediate responses to reactive oxygen species, appeared to be pathways for the 1O2-induced activation of the PI3-K-Akt survival pathway. Thus, activation of Akt by 1O2 is mediated by PI3-K and contributes to a survival response that counteracts cell death after 1O2-induced injury. However, unlike the response to other oxidants, activation of the PI3-K-Akt by 1O2 does not involve activation of growth factor receptors, FAK or Ras protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号