首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   4篇
  国内免费   8篇
数理化   107篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   16篇
  2011年   7篇
  2010年   10篇
  2009年   12篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1990年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
Silver ion can perturb the Belousov-Zhabotinskii (B-Z) oscillating chemical reaction. Therefore, the B-Z oscillating system was applied in the determination of silver ion by using a platinum wire as an indicator electrode in the potentiometric method. The amplitude of the potentiometric oscillation increased linearly in proportion to [Ag+] in the range of 9.42 x 10(-6) M to 2.54 x 10(-4) M, with a correlation coefficient of 0.999 under the optimum conditions. The obtained LOD (2sigma) was 8.85 x 10(-6) M and the relative standard deviation (RSD) for five measurements of 1 x 10(-4) M silver ion was 5%. The influence of some potentially interference was also investigated.  相似文献   
2.
A new H2O2 enzymeless sensor has been fabricated by incorporation of thionin onto multiwall carbon nanotubes (MWCNTs) modified glassy carbon electrode. First 50 μL of acetone solution containing dispersed MWCNTs was pipetted onto the surface of GC electrode, then, after solvent evaporations, the MWCNTs modified GC electrode was immersed into an aqueous solution of thionin (electroless deposition) for a short period of time <5–50 s. The adsorbed thin film of thionin was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase enzyme. Also the modified electrode shows excellent catalytic activity for oxygen reduction at reduced overpotential. The rotating modified electrode shows excellent analytical performance for amperometric determination of hydrogen peroxide, at reduced overpotentials. Typical calibration at ?0.3 V vs. reference electrode, Ag/AgCl/3 M KCl, shows a detection limit of 0.38 μM, a sensitivity of 11.5 nA/μM and a liner range from 20 μM to 3.0 mM of hydrogen peroxide. The glucose biosensor was fabricated by covering a thin film of sol–gel composite containing glucose oxides on the surface of thionin/MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 1 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. In addition biosensor can reach 90% of steady currents in about 3.0 s and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) is eliminated. The usefulness of biosensor for direct glucose quantification in human blood serum matrix is also discussed. This sensor can be used as an amperometric detector for monitoring oxidase based biosensors.  相似文献   
3.
Celestine blue(CB)was introduced as a new electroactive indicator in DNA biosensors.The interaction of CB with DNA was investigated by electrochemical and spectroscopic methods.The effect of buffer kind and p H on the electrochemical behavior of CB was studied.The peak currents of CB were linearly related to DNA concentration in the range of 5.0×10~(-9) to 1.0×10~(-7)mol/L.The detection limit of this approach was 4.76×10~(-10) mol/L.Based on spectrometry data a hypochromic effect was observed in UV-Vis spectra of CB with increasing DNA concentration.The results illustrate the possible interaction mode between CB and DNA is electrostatic binding.  相似文献   
4.
The widely utilization of phenol and its derivatives such as 3-nitrophenol (3-NP) has led to the worldwide pollution in the environment. In this study, Ti/TiO2 photoelectrode was prepared with anodic oxidation of Ti foil electrode and then the photoelectrocatalytic (PEC) degradation of 3-NP was performed via this electrode, comparing with photocatalytic (PC), electrooxidation and direct photolysis by ultraviolet light. A significant photoelectrochemical synergetic effect in 3-NP degradation was observed on the Ti/TiO2 electrode and rate constant for the PEC process of Ti/TiO2 electrode was about three times as high as its PC degradation process. 3-NP concentration monitoring was carried out with differential pulse voltammetry. Results showed that PEC degradation has highest effect on concentration decreasing of 3-NP at solution and degraded it about 38 %, while other processes degradation efficiencies were about 4, 7, and 12 % for electrooxidation, direct photolysis and photocatalytic degradation, respectively. Finally, effects of solution pH and applied potential on degradation efficiency were studied and results showed that optimum pH for degradation is equal 4.00 and optimum potential is 1.2 V vs. Ag|AgCl|KCl (3M) reference electrode.  相似文献   
5.
In present work, the ionic liquid, 1‐butyl‐3‐methylimidazolium bis (trifluoromethylsulfonyl) imide was incorporated in the carbon paste electrode as the binder (IL‐CPE). O‐anisidine (OA) monomer is electropolymerized in the presence of an aqueous acidic solution onto IL‐CPE (POA/IL‐CPE). The as‐prepared substrate is used as a porous matrix for dispersion of Ni(II) ions by immersing the modified electrode in a nickel(II) nitrite solution. The modified electrodes are characterized by scanning electron microscopy (SEM) and electrochemical methods. The POA/IL‐CPE was applied successfully to highly efficient (current density of 18.2 mA cm?2) electrocatalytic oxidation of formaldehyde in alkaline medium. Finally, the rate constant for chemical reaction between formaldehyde and redox sites of the electrode was calculated.  相似文献   
6.
This work describes the promising activity of silver nanoparticles on the surface of a poly(2-amino diphenylamine) modified carbon paste electrode (CPE) towards formaldehyde oxidation. Electrodeposition of the conducting polymer film on the CPE was carried out using consecutive cyclic voltammetry in an aqueous solution of 2-aminodiphenylamine and HCl. Nitrogen groups in the polymer backbone had a Ag ion accumulating effect, allowing Ag nanoparticles to be electrochemically deposited on the surface of the electrode. The electrochemical and morphological characteristics of the modified electrode were investigated. The electro-oxidation of formaldehyde on the surface of electrode was studied using cyclic voltammetry and chronoamperometry in aqueous solution of 0.1 mol/L NaOH. The electro-oxidation onset potential was found to be around -0.4 V, which is unique in the literature. The effect of different concentrations of formaldehyde on the electrocatalytic activity of the modified electrode was investigated. Finally, the diffusion coefficient of formaldehyde in alkaline media was calculated to be 0.47 × 10-6 cm2/s using chronoamperometry.  相似文献   
7.
8.
In this study, direct electron transfer (ET) has been achieved between an immobilised non-symbiotic plant haemoglobin class II from Beta vulgaris (nsBvHb2) and three different screen-printed carbon electrodes based on graphite (SPCE), multi-walled carbon nanotubes (MWCNT-SPCE), and single-walled carbon nanotubes (SWCNT-SPCE) without the aid of any electron mediator. The nsBvHb2 modified electrodes were studied with cyclic voltammetry (CV) and also when placed in a wall-jet flow through cell for their electrocatalytic properties for reduction of H2O2. The immobilised nsBvHb2 displayed a couple of stable and well-defined redox peaks with a formal potential (E°′) of ?33.5 mV (vs. Ag|AgCl|3 M KCl) at pH 7.4. The ET rate constant of nsBvHb2, k s, was also determined at the surface of the three types of electrodes in phosphate buffer solution pH 7.4, and was found to be 0.50 s?1 on SPCE, 2.78 s?1 on MWCNT-SPCE and 4.06 s?1 on SWCNT-SPCE, respectively. The average surface coverage of electrochemically active nsBvHb2 immobilised on the SPCEs, MWCNT-SPCEs and SWCNT-SPCEs obtained was 2.85?×?10?10 mol cm?2, 4.13?×?10?10 mol cm?2 and 5.20?×?10?10 mol cm?2. During the experiments the immobilised nsBvHb2 was stable and kept its electrochemical and catalytic activities. The nsBvHb2 modified electrodes also displayed an excellent response to the reduction of hydrogen peroxide (H2O2) with a linear detection range from 1 μM to 1000 μM on the surface of SPCEs, from 0.5 μM to 1000 μM on MWCNT-SPCEs, and from 0.1 μM to 1000 μM on SWCNT-SPCEs. The lower limit of detection was 0.8 μM, 0.4 μM and 0.1 μM at 3σ at the SPCEs, the MWCNT-SPCEs, and the SWCNT-SPCEs, respectively, and the apparent Michaelis–Menten constant, $ {\hbox{K}}_{\rm{M}}^{\rm{app}} $ , for the H2O2 sensors was estimated to be 0.32 mM , 0.29 mM and 0.27 mM, respectively.  相似文献   
9.
A novel net analyte signal standard addition method (NASSAM) was used for simultaneous determination of the drugs anthazoline and naphazoline. The NASSAM can be applied for determination of analytes in the presence of known interferents. The proposed method is used to eliminate the calibration and prediction steps of multivariate calibration methods; the determination is carried out in a single step for each analyte. The accuracy of the predictions against the H-point standard addition method is independent of the shape of the analyte and interferent spectra. The net analyte signal concept was also used to calculate multivariate analytical figures of merit, such as LOD, selectivity, and sensitivity. The method was successfully applied to the simultaneous determination of anthazoline and naphazoline in a commercial eye drop sample.  相似文献   
10.
Ag nanoparticles were synthesized on the surface of a glassy carbon electrode modified with p‐tert‐butylcalix[4]arene and p‐tert‐butylcalix[6]arene by the deposition of Ag+at an open circuit potential ...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号