首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
数理化   9篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 343 毫秒
1
1.
A new chromium(III) Schiff base complex, [Cr(3-methoxysalen)(H2O)2]ClO4, where salen=N,N-ethylenebis- (salicylideneimine), has been synthesized and characterized by spectroscopic techniques. Single crystal X-ray data reveals that the complex assumes a trans-diaquo structure with formulation [Cr(C18H22N2O6)]ClO4 but, unlike in Cr (salen)(H2O)2 +, the two trans-water molecules are equidistant from CrIII. The effect of the substituent on the phenyl ring in respect of redox reactivity has been investigated. The kinetics of the oxidation of [Cr(Schiff base)- (H2O)2]ClO4, where Schiff base=salen, (1) and 3-OMe-salen, (2) by PhOI has been studied. The bimolecular rate constant for the formation of the O=Crv Schiff base in case of (2) was four times faster than that of (1). The introduction of the OMe group substituent on the phenyl ring influences not only the structure and crystal packing, but also the reactivity of the complex and the electronic environment around the metal ion.  相似文献   
2.
A novel method for the synthesis of 2-imino-2H-benzo[h]chromenes via the sequential addition of N-chlorosuccinimide and triethylamine to 2-amino-4H-benzo[h]chromenes has been established. This reaction protocol represents an efficient synthetic strategy to form iminochromene derivatives under mild reaction conditions, which utilizes readily accessible aminochromenes as starting materials and tolerates a wide range of substrates.  相似文献   
3.
The synthesis, X-ray and e.p.r. spectral studies of a 3d–4f couple are described here. The crystal structure of [Cu(salbn)Gd(NO3)3·H2O], (2), salbn = N,N-butylenebis(salicylideaminato), has been determined by X-ray crystallography. Compound (2) crystallizes in the monoclinic system, space group p21/n, with a = 9.025(1), b = 22.912(1), c = 12.790(1) Å, = 99.36(1), Z = 4. The deviations of the four coordinating atoms (O(1)O(2)N(1) and N(2) of salbn and the copper atom is displaced from the plane in spite of the lack of any apical ligand. The gadolinium(III) ion is nine-coordinated by the two oxygen atoms of the salbn moiety, three bidentate nitrate ions and one water molecule. The geometry of GdIII can be described as a square antiprism, in which compound CuII and GdIII are bridged by the two phenolic oxygens of salbn. The CuII–GdIII distance is 3.269(1) Å. The bridging core CuO2Gd is a butterfly shape. Significant distortion was observed for the complex having the larger diamino string. The title compound exhibits seven e.s.r. transitions with |D| = 0.0467 cm–1, which demonstrates the existence of zero field splitting. This outcome indicates that compound (2) consists of a perfectly isolated dinuclear Cu–Gd core and steric bulk alters the dihedral angle in the Cu–O–Gd bridge.  相似文献   
4.
The free Schiff bases H2MABCE, H2MABCP, and H2MABCT and their complexes [Ni(MABCE)], [Ni(MABCP)], [Ni(MABCT)], [Cu(MABCE)], [Cu(MABCP)], and [Cu(MABCT)] have been synthesized and characterized by spectroscopic, cyclic voltammetric, and thermal studies. The geometry around nickel is square planar with N2O2 donor atoms. Cyclic voltammetric studies of the Ni(II) complexes show one-electron quasi-reversible waves corresponding to Ni(II)/Ni(I) and Ni(II)/Ni(III) processes. The Cu(II) complexes exhibit an irreversible well defined one electron transfer reduction peak in the range of ?0.34 to ?1.08 V. The electronic spectra of the complexes suggest a four-coordinate geometry. The crystal structure of the ligand H2MABCT and the complex [Ni(MABCP)] have also been reported. The mean Ni–N and Ni–O bond distances are Ni–N = 1.849(4) and Ni–O = 1.837(4) Å.  相似文献   
5.
Optically active disilanes with one chiral silicon center, (R)-1,2-dimethyl-1-(naphth-1-yl)-1,2,2-triphenyldisilane and (R)-1,2,2-trimethyl-2-(4-methoxynaphth-1-yl)-1-(naphth-1-yl)-1-phenyldisilane, were obtained by the reaction of (S)-methyl(naphth-1-yl)phenylchlorosilane (> 99% ee) with methyldiphenylsilyllithium or by the reaction of methyldiphenylchlorosilane with optically active (S)-methyl(naphth-1-yl)phenylsilyllithium and by the reaction of (S)-methyl(naphth-1-yl)phenylchlorosilane (> 99% ee) with dimethyl(4-methoxynaphth-1-yl)silyllithium. Under the optimized conditions, the reactions proceeded with almost complete inversion for the cholorosilanes and retention for the silyl anions. Optically active disilanes with two chiral centers, (1R,2R)-1,2-dimethyl-1,2-di(naphth-1-yl)-1,2-diphenyldisilane and (1S,2S)-1,2-di(4-methoxynaphth-1-yl)-1,2-dimethyl-1,2-diphenyldisilane, were obtained in high optical purity by the reactions of corresponding optically active halogenosilanes (Cl or F) with optically active silyllithiums. The silicon-silicon bond and the silicon-naphthyl bond of (R)-1,1,2-trimethyl-1,2-di(naphth-1-yl)-2-phenyldisilane and (1R,2R)-1,2-dimethyl-1,2-di(naphth-1-yl)-1,2-diphenyldisilane were cleaved without selectivity on bromination. The silicon-(4-methoxynaphth-1-yl) bond of (R)-1,2,2-trimethyl-2-(4-methoxynaphth-1-yl)-1-(naphth-1-yl)-1-phenyldisilane was regiospecifically cleaved, followed by the stereoselective cleavage of the remaining chiral silicon-naphthyl bond (94% inversion). Although the silicon-(4-methoxynaphth-1-yl) bonds of (1S,2S)-1,2-di(4-methoxynaphth-1-yl)-1,2-dimethyl-1,2-diphenyldisilane (> 99% ee) were regioselectively cleaved without silicon-silicon bond scission, remarkable racemization could not be avoided during the one-pot reaction.  相似文献   
6.
Mononuclear and dinuclear copper(II) complexes with thiophenecarboxylic acid, [Cu(3‐TCA)2(2,2′‐bpy)] ( 1 ), [Cu(3‐Me‐2‐TCA)2(H2O)(2,2′‐bpy)] ( 2 ), [Cu(5‐Me‐2‐TCA)2(H2O)(2,2′‐bpy)] ( 3 ) and [Cu2(2,5‐TDCA)(DMF)2(H2O)2(2,2′‐bpy)2](ClO4)2 ( 4 ) (where 3‐TCA = 3‐thiophenecarboxylic acid; 3‐Me‐2‐TCA = 3‐methyl‐2‐thiophenecarboxylic acid; 5‐Me‐2‐TCA = 5‐methyl‐2‐thiophenecarboxylic acid; 2,5‐TDCA = thiophene‐2,5‐dicarboxylic acid; 2,2′‐bpy = 2,2′‐bipyridyl; DMF = N,N‐dimethylformamide), were synthesized. Compounds 1 – 4 were extensively characterized using both analytical and spectroscopic methods. Additionally, the solid‐state structures of 1 and 4 were unambiguously established from single‐crystal X‐ray diffraction studies. The hexacoordinated Cu(II) centre in 1 (CuO4N2) is a distorted octahedral geometry whereas the pentacoodinated 4 (CuO3N2) has distorted square pyramidal geometry. Compounds 1 and 4 exhibit intermolecular hydrogen bonding which leads to the formation of two‐ and three‐dimensional supramolecular architectures, respectively. Spectrophotometric and computational investigations suggest that these compounds bind with DNA in minor groove binding such that Kb = 4.9 × 105 M?1 and Ksv = 3.4 × 105 M?1, and binding score of ?5.26 kcal mol?1. The binding affinity of these complexes to calf thymus DNA is in the order 2 > 3 > 4 > 1 . Methyl‐substituted thiophene ring increases the DNA binding affinity whereas unsubstituted thiophene ring DNA binding rate is reduced. The methyl group on the thiophene ring would sterically hinder π–π stacking of the ring with DNA base pairs, and subsequently they are involved in hydrophobic interaction with the DNA surface rather than partial intercalative interaction. Compounds 1 – 4 show pronounced activity against B16 mouse melanoma skin cancer cell lines as measured by MTT assay yielding IC50 values in the micromolar concentration range. The compounds could prove to be efficient anti‐cancer agents, since at a concentration as low as 2.1 μg ml?1 they exerted a significant cytotoxic effect in cancer cells whereas cell viability was not affected in normal cells.  相似文献   
7.
8.
The synthesis of a series of thiacyclophanes and optically active binaphthol-based chiral thiacyclophanes is reported with XRD structure. Two diastereomeric tetrathiacyclophanes are designed and synthesized. The two diastereomers are evidenced by crystal structure; the single-crystal X-ray studies reveal that one of the isomers possesses an inherent property of self-assembling into a vertical stack of tunnel-like structures.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号