首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
  国内免费   1篇
数理化   7篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
排序方式: 共有7条查询结果,搜索用时 11 毫秒
1
1.
动力型锂离子电池富锂三元正极材料研究进展   总被引:3,自引:0,他引:3  
随着电动汽车、智能电网以及大规模储能领域的快速发展,对作为储能设备的锂离子电池的各项性能指标,如能量密度和功率密度等,提出了更加苛刻的要求。因此,开发稳定性好、比容量高的新型正极材料是进一步提高锂离子电池能量密度的关键。富锂三元正极材料xLi_2MnO_3·(1-x)Li Mn_(1/3)Ni_(1/3)Co_(1/3)O_2(0.1≤x≤0.5)具有工作电压高、比容量高、环境友好等优点,引起了广大科研工作者的高度关注和广泛研究。本文就此类新型富锂三元正极材料的研究进展进行了总结,对该类材料的晶体结构特征以及首次充放电机理、电化学性能的改善等进行了评述,并对其未来的发展方向进行了展望。  相似文献   
2.
采用溶胶-凝胶法在空气中900℃退火1h成功制备出Y1-xEuxBO3(x=0.05,0.10,0.15和0.20)荧光薄膜材料,在XRD图谱中未发现未知衍射峰,为单相六角晶体硼酸钇.所制得的薄膜表面光滑,并呈多孔结构,由平均粒径在100 nm的密集的球形纳米晶体组成,其均方根粗糙度为13 nm.FT-IR结果显示有机物和硝酸盐未完全分解.Y1-xEuxBO3薄膜在325 nm波长激发光下检测出位于591 nm处微弱的橙色光,红色发射光谱位于613 nm,归咎于5D0→7F2能级跃迁,红色光谱强度随着Eu掺杂浓度的增加而增加,显示出高效的红色发光光谱.  相似文献   
3.
以六水合氯化镁(MgCl·6H2O)为原料,以尿素为沉淀剂,采用改进的多元醇法制备了颗粒均匀、分散性好的纳米氧化镁粒子,并分别研究了反应温度和反应时间对前驱体和MgO粉体结构和形貌的影响.研究表明,在110℃反应8h后制备的前驱体为30 nm左右纳米颗粒状碱式碳酸镁Mg5 (CO3)4(OH)2(H2O)4.在700℃焙烧3h后可得到粒径为50 nm左右分散性较好的MgO纳米粒子.该种纳米氧化镁粉体对水溶液中的锶具有较好的吸附作用,吸附量为5.3 mg/g.  相似文献   
4.
以稀土硝酸盐和硼酸作为原料,采用溶胶-凝胶法在硅底片上通过浸涂合成了YBO3∶Eu3+薄膜。应用X-射线衍射(XRD)、能量色散X射线衍射(EDX)、原子力显微镜(AFM)和荧光分光光谱仪分别研究了其晶体结构、形貌、化学成份和光致发光(PL)性能。结果表明,成功合成了YBO3∶Eu3+薄膜,由平均粒径为100 nm、均方根(RMS)粗糙度为10 nm的YBO+3∶Eu3纳米晶组成,在PL光谱中于588 nm和616 nm处分别呈现出橙色发光峰和红色发光峰,归因于Eu3+掺杂的(5D0→7F1)和(5D0→7F2)能级跃迁。  相似文献   
5.
溶胶-凝胶法制备了Ag掺杂的ZnO薄膜(AZO).采用X射线衍射(XRD)、扫描电子显微镜(SEM)、UV-VIS分光光度计、光致发光检测研究了掺杂浓度和退火温度对AZO薄膜光学和结构的影响.AZO薄膜呈(002)择优生 长的纤维锌矿六角形结构的多晶相.0.5;和1; Ag掺杂的薄膜在可见光波长区域光学透过率在70;~ 80;之间,随着Ag掺杂浓度的升高平均透过率有所降低.5; Ag掺杂的ZnO薄膜经空气中700℃退火后出现两条发射光谱带,经He气氛中退火后UV发射光谱显著增强,并且可见光发射光谱随之消失.  相似文献   
6.
采用水热-高温煅烧法制备了具有不同形貌的LiFePO4/C复合材料,探讨了柠檬酸含量对其形貌和电化学性能的影响.结果表明,柠檬酸的添加对LiFePO4/C复合材料的形貌具有显著的影响.通过添加柠檬酸调控LiFePO4/C复合材料的形貌,可以极大地改善LiFePO4/C复合材料的电化学性能.当柠檬酸与LiFePO4的摩尔比为1∶2时,LiFePO4/C复合材料呈纳米片状,颗粒粒径最小,比表面积最大,在0.1C和5C时放电比容量为160.3mA·h·g1和130.9 mA·h·g-1.  相似文献   
7.
采用柠檬酸辅助水热法合成了高分散性树叶状LiFePO4/C复合正极材料。利用X射线衍射、傅里叶红外光谱、扫描电镜、高分辨率透射电镜和选区电子衍射分析了材料的形貌结构。结果表明,柠檬酸对树叶状LiFePO4/C复合材料的形成具有促进作用。该材料的最大暴露晶面为(010)晶面,且分散性较好。与颗粒状LiFePO4/C材料相比,该材料呈现出更高的放电比容量和更好的倍率性能,在0.1C和5C倍率下,放电比容量分别为158和126mAh·g-1,其原因是由于锂离子沿[010]方向的扩散距离缩短,从而使锂离子扩散系数显著增大。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号