首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   4篇
数理化   4篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
利用海藻酸钠和壳聚糖2种原料, 采用阴阳离子静电复合原理, 通过滴注法层层自组装成可搭载药物的缓释微球, 再按一定比例与海藻酸钠-壳聚糖溶液混合制成缓释微球型支架材料, 将缓释微球结构嵌入疏松多孔海绵状结构中. 研究了缓释微球的组分比对缓释微球型支架材料的孔隙率、 收缩率、 亲水性及降解性能的影响; 扫描电子显微镜照片显示, 微球结构相对完整, 多孔海绵状结构孔径为140~200 μm; 支架浸出液细胞毒性检测实验组对照组未见差异. 缓释微球体积所占比例即组分比为10%的缓释微球型支架材料孔隙率最高为68.2%~70.8%, 亲水性最好, 收缩率最低为4.4%~5.2%; 支架降解速率随缓释微球组分比升高而减慢, 组分比为20%的缓释微球型支架材料综合性能更优; 缓释微球型支架材料冻干成型前为液态, 具有良好可塑性. 缓释微球型支架材料为缓释系统与多孔支架材料有机结合提供了新思路.  相似文献   
2.
采用高温热注入法, 以P[N(CH3)2]3为磷源合成了具有近红外荧光的Ag∶InP/ZnSe纳米晶. 采用紫外|可见|近红外吸收光谱(UV|Vis|NIR)、 荧光光谱、 透射电子显微镜(TEM)、 X 射线衍射(XRD)等对产物的结构和光学性质进行了表征, 并分析了Ag掺杂浓度和温度对InP纳米晶荧光性能的影响. 通过调节Ag掺杂浓度和反应温度, 发现当Ag掺杂量为6%, 反应温度为200 ℃时, Ag∶InP纳米晶的发光效率最高. 将制备的Ag∶InP的表面包覆ZnSe, 粒子的荧光效率从原来的20%提高到45%. 将具有近红外荧光的Ag∶InP/ZnSe纳米晶应用于细胞成像, 结果表明制备的荧光纳米晶在细胞成像中清晰可见且毒性较低.  相似文献   
3.
利用真空冷冻干燥技术, 将不同质量的纳米硅酸镁锂(nLMS)与壳聚糖(CA)和海藻酸钠(SA)混合, 制备了纳米硅酸镁锂-壳聚糖-海藻酸钠(nLMS-CS-SA)复合支架材料. 研究了不同质量分数(1%, 2%, 3%, 4%)的nLMS对nLMS-CS-SA复合支架材料的外形、 微观形貌、 溶胀率、 孔隙率、 体外降解性能和生物相容性的影响, 以确定nLMS-CS-SA复合支架材料中最佳nLMS含量. 研究结果显示, nLMS-CS-SA复合支架材料是具备形态可塑性的多孔状固体, 各组材料纵断面呈片层状, 其结构疏松且内部孔隙具有高度连通性; 随着nLMS含量的增加, nLMS-CS-SA复合支架材料的孔隙率呈现先降后升的趋势; 当nLMS的质量分数为3%时, 其溶胀比最小, 体外降解速率最慢; nLMS的添加降低了nLMS-CS-SA复合支架材料的毒性. 因此, nLMS在nLMS-CS-SA复合支架材料中的最佳含量为3%.  相似文献   
4.
通过冷冻干燥技术, 将不同量的氧化石墨烯与海藻酸钠和壳聚糖复合, 构建复合支架材料. 研究了不同的氧化石墨烯含量(质量分数0, 0.3%, 0.5%, 0.7%, 1%)对支架材料微观结构、 孔隙率、 溶胀比、 体外降解性能、 机械性能及生物相容性的影响, 以确定复合支架中最佳氧化石墨烯含量. 研究结果表明, 复合材料呈固态海绵状结构, 具有一定的形态可塑性; 扫描电子显微镜观察发现, 各组支架均为三维网状结构, 随着氧化石墨烯含量的增加, 孔隙尺寸逐渐降低, 孔壁厚度增加, 孔隙尺寸在140~240 μm之间; 随氧化石墨烯含量的增加, 复合支架溶胀比和体外降解速率逐渐降低, 而机械强度明显增强; 体外细胞毒性显示, 当氧化石墨烯质量分数为0.3%时, 细胞存活率最高, 而当氧化石墨烯含量增高时, 细胞活性会被明显抑制, 造成细胞死亡. 因此, 氧化石墨烯在复合支架中最佳含量为0.3%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号