首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   3篇
数理化   10篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2012年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 250 毫秒
1
1.
文[1]给出了“正三角形各顶点到其外接圆上任意一点的切线的距离之和为定值”这一结论的推广.本文将其推广到一般情形. 引理 设自然数n≥3,a为实常数,记  相似文献   
2.
根据加速器驱动次临界系统质子超导直线加速器样机(CAFe)对于低温垂测系统的要求,设计了2K超导低温垂测控制系统。该系统的主要难点之一是用简单可靠的方式实现2K过程控制,二是对回温过程中杜瓦内压强的控制。为了解决这两点,本工作使用实验物理与工业控制系统中的集成包Sequencer实现了对气体置换、腔体降温等顺序过程的控制,能够方便实现多种流程控制。对于回温过程,使用可编程逻辑控制器等部件作为硬件控制部分,使用模糊PID控制加热器来稳定杜瓦内压强,相较于传统的PID能够实现更小的响应时间和超调量,最终为实现2K超导低温垂测控制系统提供了可行高效的解决方法。  相似文献   
3.
光催化作为节能、清洁的环境处理技术,被广泛应用于污染物处理领域,如室内气体净化、尾气VOCs处理和水体有机污染降解等.在众多光催化剂中,TiO2以其良好的化学稳定性、无二次污染、无刺激性和安全无毒等优势得到广泛研究.然而TiO2是宽禁带材料,仅能吸收太阳光谱的紫外光部分,通常需要用紫外光源来激发,光生电子-空穴易复合,这限制了其应用.过渡金属离子掺杂能在TiO2价带之上形成新的掺杂能级,从而提高其光谱响应范围,提高全光谱反应活性; 与体相TiO2相比,纳米尺寸的TiO2具有更高的光催化活性,尤其小于10 nm的量子点尺寸TiO2有着高活性面积、较短的光生电子-空穴迁移路径和独特的量子尺寸效应; Fe2O3作为吸附材料与TiO2构建复合材料能够发挥吸附与光催化协同作用,从而提高污染物处理效率.我们以构建Fe掺杂TiO2和Fe2O3量子点共负载催化剂为目标,以钛酸四丁酯(TBT)和硫酸亚铁为前驱体,采用常温水解方法将Fe掺杂的TiO2量子点生长在MCM-41分子筛表面,并通过调节硫酸亚铁加入量合成了MCM-41负载的Fe掺杂TiO2和Fe2O3量子点催化剂.采用透射电子显微镜和X射线衍射研究了复合晶体结构,采用X射线光电子能谱、紫外-可见光谱和傅里叶变换红外光谱等表征手段研究了复合量子点材料生长机理和能带结构.结合吸附过程和光降解过程建立了吸附与光催化协同作用与污染物处理效率之间的关联关系.表征结果表明,硫酸亚铁水溶液加速TBT水解成功地在MCM-41表面生长了Fe掺杂TiO2量子点,并且量子点粒径随Fe前驱体量的增加而变大; 前驱体比例Ti/Fe ≤ 3.0时,过量的硫酸亚铁会析出并在焙烧过程中在MCM-41上分解为Fe2O3量子点,Fe2O3量随着硫酸亚铁加入量提高而增多.通过调节Fe前驱体的量,一方面Fe掺杂在二氧化钛价带之上形成了掺杂能级,减小了带隙,拓宽了光响应范围,另一方面引入适量Fe2O3量子点,实现了Fe掺杂TiO2和Fe2O3量子点共负载催化剂的构建.复合材料实现了吸附过程与光催化降解过程的协同作用,Fe2O3将污染物富集于催化剂表面,Fe掺杂TiO2将其有效降解,大大提高了污染物处理能力,其中FT/M-3.0处理效率最高,并在10次循环处理后依然维持较高的吸附能力和光催化降解能力.该工作为高效光催化水处理催化剂的设计和构建提供了新思路和策略.  相似文献   
4.
众所周知,圆是椭圆的一个特例,因此有关圆的许多性质、巧合点等都可以推广到椭圆上去.本文讲将圆的两个共点线性质,借助于三角形的性质推广到椭圆的情形.……  相似文献   
5.
设点C在线段AB上,分别以AB、AC、CB为直径,在AB的同侧作半圆(以下分别称为大半圆、左半圆与右半圆,其圆心分别用O、O1、O2表示),这三个半圆围成的部分(如图1中的阴影部分)称为"鞋匠刀具".  相似文献   
6.
采用Chiralpak IC(纤维素-三(3,5-二氯苯基氨基甲酸酯)键合在5μm硅胶上)键合型手性柱,建立了喹禾灵对映体的高效液相色谱拆分方法。系统考察了流动相组成、流速和柱温对喹禾灵对映体分离效果的影响。结果表明,在正己烷-异丙醇(95∶5,体积比)为流动相,流速1.0 mL/min,柱温25℃的条件下,喹禾灵对映体能获得基线分离,分离度Rs为3.97,R-构型先出峰,两对映体的检出限均为0.045 mg/L,定量下限均为0.15 mg/L。在15~35℃柱温范围内,lnα对1/T Van’t Hoff曲线呈良好的线性关系,相关系数(r2)大于0.99,分离因子α随温度升高而降低,焓变差和熵变差热力学参数显示,喹禾灵对映体的拆分过程受焓控制。  相似文献   
7.
欧拉线的一个性质   总被引:2,自引:1,他引:1  
我们知道 ,在所有非等边三角形中 ,外心、重心、垂心在同一直线——欧拉线上 .本文给出欧拉线的一个性质 .图 1首先 ,设△ ABC为任一个不等边三角形 ,在直角坐标系中 ,将它的任意一边 (比如 AB边 )放置在 x轴上 ,AB边的中垂线与 y轴重合 ,如图 1 ,又设 AB边长为2 a,则有定理 △ ABC的欧拉线平行于 AB边的充要条件是第三个顶点C落在椭圆 x2a2 y23a2 =1上 (除去椭圆长、短轴两端的四个顶点 ) .证明 设△ ABC的 BC边中点为 M,外心为 U,重心为 S.则经过 U、S两点的直线为欧拉线 .如图 1 ,容易求得 M点坐标 ,从而求得U点、S点坐…  相似文献   
8.
摘要:光催化作为节能、清洁的环境处理技术,被广泛应用于污染物处理领域,如室内气体净化、尾气VOCs处理和水体有机污染降解等.在众多光催化剂中,Ti O_2以其良好的化学稳定性、无二次污染、无刺激性和安全无毒等优势得到广泛研究.然而Ti O_2是宽禁带材料,仅能吸收太阳光谱的紫外光部分,通常需要用紫外光源来激发,光生电子-空穴易复合,这限制了其应用.过渡金属离子掺杂能在Ti O_2价带之上形成新的掺杂能级,从而提高其光谱响应范围,提高全光谱反应活性;与体相Ti O_2相比,纳米尺寸的Ti O_2具有更高的光催化活性,尤其小于10 nm的量子点尺寸Ti O_2有着高活性面积、较短的光生电子-空穴迁移路径和独特的量子尺寸效应;Fe_2O_3作为吸附材料与Ti O_2构建复合材料能够发挥吸附与光催化协同作用,从而提高污染物处理效率.我们以构建Fe掺杂Ti O_2和Fe_2O_3量子点共负载催化剂为目标,以钛酸四丁酯(TBT)和硫酸亚铁为前驱体,采用常温水解方法将Fe掺杂的Ti O_2量子点生长在MCM-41分子筛表面,并通过调节硫酸亚铁加入量合成了MCM-41负载的Fe掺杂Ti O_2和Fe_2O_3量子点催化剂.采用透射电子显微镜和X射线衍射研究了复合晶体结构,采用X射线光电子能谱、紫外-可见光谱和傅里叶变换红外光谱等表征手段研究了复合量子点材料生长机理和能带结构.结合吸附过程和光降解过程建立了吸附与光催化协同作用与污染物处理效率之间的关联关系.表征结果表明,硫酸亚铁水溶液加速TBT水解成功地在MCM-41表面生长了Fe掺杂Ti O_2量子点,并且量子点粒径随Fe前驱体量的增加而变大;前驱体比例Ti/Fe≤3.0时,过量的硫酸亚铁会析出并在焙烧过程中在MCM-41上分解为Fe_2O_3量子点,Fe_2O_3量随着硫酸亚铁加入量提高而增多.通过调节Fe前驱体的量,一方面Fe掺杂在二氧化钛价带之上形成了掺杂能级,减小了带隙,拓宽了光响应范围,另一方面引入适量Fe_2O_3量子点,实现了Fe掺杂Ti O_2和Fe_2O_3量子点共负载催化剂的构建.复合材料实现了吸附过程与光催化降解过程的协同作用,Fe_2O_3将污染物富集于催化剂表面,Fe掺杂Ti O_2将其有效降解,大大提高了污染物处理能力,其中FT/M-3.0处理效率最高,并在10次循环处理后依然维持较高的吸附能力和光催化降解能力.该工作为高效光催化水处理催化剂的设计和构建提供了新思路和策略.  相似文献   
9.
化石燃料的枯竭和不断增长的能源需求给人类带来巨大的挑战,加之能源消耗过程带来的环境问题使得开发清洁可再生绿色能源迫在眉睫.氢能具有零排放、可再生、能量高和来源广等特点,且可通过化石能源和电解水制取,是未来人类最理想的替代能源之一.相较于化石能源制氢,电解水制氢被认为是一种最有前途的清洁制氢技术,能够将可再生能源(例如太阳能和风能)产生的剩余电能以化学能的形式存储起来.电解水反应由发生在阴极的析氢反应与发生在阳极的析氧反应组成.其中,析氧反应涉及多个质子和电子转移,反应动力学缓慢严重限制了其水分解的整体效率.为满足实际应用,亟待开发低成本、高催化活性和在工业电解条件(60~80℃,20%~30% KOH,400 mA·cm-2)下长期稳定性强等特性的析氧催化剂.本文报道了一种用于析氧反应的自支撑泡沫镍铁自支撑的镍铁层状双金属氢氧化物-二硫化钼(NiFe LDH-MoSx/INF)集成电极,在正常碱性测试条件(25℃,1 M KOH)和模拟工业电解条件(65 ° C,5 M KOH)下均表现出优异的催化性能.优化后的电极在一般碱性测试条件下,过电势仅需195和290 mV即可达到100和400 mA·cm-2的电流密度.在模拟工业电解条件下达到相同的电流密度,过电势只需156和201 mV.在两种条件下进行长期稳定性测试,催化剂均未观察到明显的失活现象.在两电极体系(NiFe LDH-MoSx/INF ‖ 20%Pt/C)全解水测试中,达到100 mA·cm2的电流密度仅需1.72 V的电压.还使用NiFe LDH-MoSx/INF作为阳极催化剂构建膜电极并评价其阴离子交换膜电解水的性能:在400 mA·cm-2的电流密度下能量转换效率(60℃,1 M KOH)为71.8%.综上,原位生长策略保证了此类电极的长期稳定性.硫化基底的存在可以控制NiFe LDH的生长厚度,从而提高集成电极的整体导电性.另外,MoSx的引入进一步调节了NiFe LDH的电子结构,进而优化了反应中间体的吸附能及状态.在模拟工业操作条件下进行的电化学测试进一步证实了多孔三维自支撑NiFe LDH-MoSx/INF集成电极具有在工业电解水中大规模应用的前景.本文为合理设计用于工业阴离子交换膜水电解的非贵金属析氧催化剂提供新的策略.  相似文献   
10.
对过饱和溶液在施加一定的流体压力差使之循环流动,实验结果测算草酸、草酸钠、硼酸和磷酸氢二钠等在不同温度下饱和溶液降温结晶时流动电位随时间的变化规律.实验结果表明流动电位大小与结晶物质的种类、温度和浓度有关,同时易受外界因素的干扰,实验数据的严格重现较难.但多次实验结果都显示:过饱和溶液在某一温度下形成晶核过程中其流动电位均发生显著变化;当饱和溶液起始结晶温度较高时,其流动电位突变点温度也更高.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号