首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
数理化   5篇
  2022年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 100 毫秒
1
1.
设计了一种便携式食品放射性检测仪,主要包括测量结构、核信号处理单元和能谱分析程序。核信号处理单元主要包括抗混叠低通滤波器、程控增益放大器、高速A/D采样、数字低通滤波、梯形成形、脉冲幅度甄别和能谱获取等。能谱分析程序主要包括能谱光滑、能谱寻峰、能量刻度、本底扣除以及活度计算等。最后,以测量131I核素为例,研究了仪器对不同体积样品的探测效率、刻度系数和最低可探测活度,并根据刻度系数对300 mL食品样品的放射性测量结果进行校正。结果表明,仪器对常见食品中131I的放射性活度检测结果误差小于10%,满足食品放射性测量需求。  相似文献   
2.
以丙烯酸(AA)、 苯甲酸(BA)和邻菲啰啉(Phen)为配体, Eu3+为中心离子, 制备了可聚合荧光配合物单体, 并以此单体为功能单体, 聚乙二醇单甲醚甲基丙烯酸酯(MPEGMA)和甲基丙烯酸六氟丁酯(HFMA)为共聚单体, 通过溶液聚合制备出含铕两亲荧光接枝共聚物P-[HFMA-co-Eu(AA)(BA)2Phen]g-PEG. 利用红外光谱(FTIR)和核磁共振波谱(1H NMR和19F NMR)对共聚物的结构进行表征; 采用表面张力法测定共聚物的临界胶束浓度(cmc)为0.20 g/L; 通过透射电子显微镜(TEM)和动态光散射仪(DLS)观察胶束的形貌及其胶束化行为, 发现该共聚物可以形成大小均一的球形胶束, 且随着共聚物浓度的提高, 胶束粒径相应增大; 在溶液浓度达到临界胶束浓度时, 溶液荧光出现强度突变.  相似文献   
3.
以丙烯酸(AA)为第一配体、邻菲罗啉(Phen)为第二配体、Eu3+为中心离子,合成了一种可聚合的稀土铕配合物.以配合物单体、甲基丙烯酸甲酯、丙烯酰胺和对苯乙烯磺酸钠为共聚单体,通过无皂乳液聚合的方法,制备了含铕荧光共聚物乳液.采用红外光谱对共聚物的结构进行了表征,并探讨了配合物单体含量对共聚物乳液性能的影响.透射电子显微镜(TEM)和激光光散射粒度仪(PCS)测试结果表明,共聚物乳液形成了相对均一的球状结构,但随着配合物单体含量增加,共聚物微球粒径逐渐增大、分散性变差.采用荧光分光光度计测试了共聚物乳液的荧光性能,在594和619 nm处出现Eu3+的特征发射光谱,且荧光强度随着配合物单体含量增加而增强.  相似文献   
4.
以FeCl3·6H2O和FeCl2·4H2O为原料,通过化学共沉淀方法制备Fe3O4磁性纳米粒子,用油酸和十一烯酸钠对纳米粒子进行双重改性,得到固含量为4%的稳定水基磁流体.在该磁流体存在下,以苯乙烯和甲基丙烯酸缩水甘油酯为单体进行无皂乳液聚合,制备出磁性种子微球;在种子磁性微球存在下,以对苯乙烯磺酸钠,稀土配合物等为功能单体,通过无皂种子乳液聚合法制备磁性荧光微球,该微球表现出优异的磁学性能以及荧光性能.用傅立叶红外光谱仪、透射电子显微镜、X射线衍射仪、振动样品磁强计、荧光分光光度计对磁性荧光微球结构形貌以及磁性荧光性能表征.测试结果表明,所制备的种子微球以及磁性荧光微球呈良好的单分散性,Z均粒径分别为147 nm和228 nm,热重分析表明磁性荧光微球中Fe3O4的含量为4.7%,与之对应的饱和磁化强度为0.396 emu/g,在595 nm和619 nm处观测到Eu3+的特征发射光谱.  相似文献   
5.
首先制备了油酸和十一烯酸钠改性的水基磁流体,然后在其存在的情况下,将可聚合的稀土铕配合物单体Eu(AA)3Phen(AA=丙烯酸,phen=邻菲罗啉)与苯乙烯和甲基丙烯酸缩水甘油酯在过硫酸钾的引发下,进行无皂种子乳液聚合来制备荧光磁性高分子微球。 利用透射电子显微镜和动态光散射粒度仪表征了粒子的形貌及粒径,发现荧光磁性微球具有明显的核-壳结构及较窄的粒径分布;通过红外光谱和X射线衍射分析表征了粒子的化学及晶体结构;通过振动样品磁强计和荧光分光光度计表征粒子的磁性及荧光性能,发现荧光磁性微球具有超顺磁性,其荧光发射光谱在594和619 nm处出现Eu3+的特征荧光发射峰。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号