首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
环境安全   47篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
  2002年   5篇
  2001年   1篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1990年   1篇
  1981年   1篇
  1979年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有47条查询结果,搜索用时 0 毫秒
1.
Peregrine falcons (Falco peregrinus) have been recorded nesting in Big Bend National Park, Texas, USA and other areas of the Chihuahuan Desert since the early 1900s. From 1993 to 1996, peregrine falcon productivity rates were very low and coincided with periods of low rainfall. However, low productivity also was suspected to be caused by environmental contaminants. To evaluate potential impacts of contaminants on peregrine falcon populations, likely avian and bat prey species were collected during 1994 and 1997 breeding seasons in selected regions of western Texas, primarily in Big Bend National Park. Tissues of three peregrine falcons found injured or dead and feathers of one live fledgling also were analyzed. Overall, mean concentrations of DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], a metabolite of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane], were low in all prey species except for northern rough-winged swallows (Stelgidopteryx serripennis, mean = 5.1 microg/g ww). Concentrations of mercury and selenium were elevated in some species, up to 2.5 microg/g dw, and 15 microg/g dw, respectively, which upon consumption could seriously affect reproduction of top predators. DDE levels near 5 microg/g ww were detected in carcass of one peregrine falcon found dead but the cause of death was unknown. Mercury, selenium, and DDE to some extent, may be contributing to low reproductive rates of peregrine falcons in the Big Bend region.  相似文献   
2.
3.
4.
Anaerobic activated sludge   总被引:3,自引:0,他引:3  
  相似文献   
5.
The dusky shark (Carcharhinus obscurus) is the largest member of the genus Carcharhinus and inhabits coastal and pelagic ecosystems circumglobally in temperate, subtropical and tropical marine waters. In the western North Atlantic Ocean (WNA), dusky sharks are overfished and considered vulnerable by the International Union for the Conservation of Nature. As a result, retention of dusky sharks in commercial and recreational fisheries off the east coast of the United States (US) and in the northern Gulf of Mexico is prohibited. Despite the concerns regarding the status of dusky sharks in the WNA, little is known about their habitat utilization. During the summers of 2008–2009, pop-up satellite archival tags were attached to ten dusky sharks (one male, nine females) at a location where they have been observed to aggregate in the north central Gulf of Mexico southwest of the Mississippi River Delta to examine their movement patterns and habitat utilization. All tags successfully transmitted data with deployment durations ranging from 6 to 124 days. Tag data revealed shark movements in excess of 200 km from initial tagging locations, with sharks primarily utilizing offshore waters associated with the continental shelf edge from Desoto Canyon to the Texas/Mexican border. While most sharks remained in US waters, one individual moved from the northern Gulf of Mexico into the Bay of Campeche off the coast of Mexico. Sharks spent 87 % of their time between 20 and 125 m and 83 % of their time in waters between 23 and 30 °C. Since dusky sharks are among the most vulnerable shark species to fishing mortality, there is a recovery plan in place for US waters; however, since they have been shown to make long-distance migrations, a multi-national management plan within the WNA may be needed to ensure the successful recovery of this population.  相似文献   
6.
High Rates of Extinction and Threat in Poorly Studied Taxa   总被引:1,自引:0,他引:1  
  相似文献   
7.
8.
9.
Non-native species have invaded most parts of the world, and the invasion process is expected to continue and accelerate. Because many invading non-native species are likely to become permanent inhabitants, future consideration of species-area relationships (SARs) should account for non-native species, either separately or jointly with native species. If non-native species occupy unused niches and space in invaded areas and extinction rate of native species remains low (especially for plants), the resultant SARs (with both native and non-native species) will likely be stronger. We used published and newly compiled data (35 data sets worldwide) to examine how species invasions affect SARs across selected taxonomic groups and diverse ecosystems around the world. We first examined the SARs for native, non-native, and all species. We then investigated with linear regression analyses and paired or unpaired t tests how degree of invasion (proportion of non-native species) affected postinvasion SARs. Postinvasion SARs for all species (native plus non-native) became significantly stronger as degree of invasion increased (r2 = 0.31, p = 0.0006), thus, reshaping SARs worldwide. Overall, native species still showed stronger and less variable SARs. Also, slopes for native species were steeper than for non-native species (0.298 vs. 0.153). There were some differences among non-native taxonomic groups in filling new niches (especially for birds) and between islands and mainland ecosystems. We also found evidence that invasions may increase equilibrial diversity. Study of such changing species–area curves may help determine the probability of future invasions and have practical implications for conservation.  相似文献   
10.
We developed an assessment model to quantify the wildlife habitat value of New England salt marshes based on marsh characteristics and the presence of habitat types that influence habitat use by terrestrial wildlife. Applying the model to 12 salt marshes located in Narragansett Bay, RI resulted in assessment scores that ranged over a factor of 1.5 from lowest to highest. Pre-classifying the results based on marsh size and morphology helped to compare assessment scores between marshes, and demonstrated that even the lower ranking marshes had substantial habitat value. Stepwise multiple regression analysis of assessment scores and model components demonstrated that salt marsh morphology, the degree of anthropogenic modification, and salt marsh vegetative heterogeneity were significant variables and accounted for 91.3% of the variability in component scores. Our results suggest that targeting these components for restoration may lead to improved assessment scores for our study marshes. We also examined the use of lower resolution remote sensing data in the assessment in order to minimize the time and effort required to complete the model. Scores obtained using smaller-scale, lower resolution data were significantly lower than those obtained using larger-scale, higher resolution data (df = 11; t = 2.2; p < 0.001). The difference was significantly positively correlated with the portion of the assessment score that could be attributed to trees, pools, and pannes and marsh size (r (2) =0.50, F = 4.6, p = 0.04), and could indicate a bias against smaller, more heterogeneous marshes. We conclude that potential differences need to be weighed against the time benefit of using this type of data, bearing in mind the marsh size and the goals of the assessment. Overall, our assessment can provide information to aid in prioritizing marshes for protection and restoration, identify marshes that may harbor significant biodiversity, or help monitor changes in habitat value over time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号