首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   3篇
  国内免费   5篇
环境安全   194篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   10篇
  2016年   17篇
  2015年   2篇
  2014年   6篇
  2013年   17篇
  2012年   12篇
  2011年   18篇
  2010年   8篇
  2009年   11篇
  2008年   9篇
  2007年   9篇
  2006年   11篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
1.
2.
3.
This study consisted of the sediment toxicity assessment of the Bay of Cádiz based on two endpoints: growth inhibition for Cylindrotheca closterium (benthic microalgae) and fecundity inhibition for Tisbe battagliai (harpacticoid copepod). A new methodology to eliminate (but not as storage technique) the autochthonous biota present in the sediment samples by immersing them in liquid nitrogen (? 196 °C) was also assessed. Sediment toxicity data showed different toxicity levels for both organisms. In general, T. battagliai was more sensitive; however a good correlation (r = 0.75; p  < 0.05) between sediment toxicity results for both species was found. Data in pore water (pH, redox potential, and toxicity for microalgae and copepod) and sediment (pH, redox potential, organic carbon, and metal concentrations) demonstrated that ultra-freezing did not alter sample characteristics; thus, this technique can be adopted as a pre-treatment in whole-sediment toxicity tests in order to avoid misleading results due to presence of autochthonous biota. Multivariate statistical analysis such as cluster and principal component analysis using chemical and ecotoxicological data were employed. Silt and organic matter percentage and lead concentration were found to be the factors that explain about 77% of sediment toxicity in the Bay of Cádiz. Assay methodology determined in this study for both assayed species is considered adequate to be used in sediment toxicity monitoring programs. Results obtained using both species show that the Bay of Cádiz can be considered a moderately polluted zone.  相似文献   
4.
5.
To evaluate the effectiveness of emission control regulations designed for reducing air pollution, chemically resolved PM2.5 data have been collected across Canada through the National Air Pollution Surveillance network in the past decade. 24-hr time integrated PM2.5 collected at seven urban and two rural sites during 2010-2016 were analyzed to characterize geographical and seasonal patterns and associated potential causes. Site-specific seven-year mean gravimetric PM2.5 mass concentrations ranged from 5.7 to 9.6 µg/m3. Seven-year mean concentrations of SO42?, NO3?, NH4+, organic carbon (OC), and elemental carbon (EC) were in the range of 0.68 to 1.6, 0.21 to 1.5, 0.27 to 0.71, 1.1 to 1.9, and 0.37 to 0.71 µg /m3, accounting for 10.8%-18.1%, 3.7%-16.7%, 4.7%-7.4%, 18.4%-21.0%, and 6.4%-10.6%, respectively, of gravimetric PM2.5 mass. PM2.5 and its five major chemical components showed higher concentrations in southeastern Canada and lower values in Atlantic Canada, with the seven-year mean ratios between the two regions being on the order of 1.7 for PM2.5 and 1.8-7.1 for its chemical components. When comparing the concentrations between urban and rural sites within the same region, those of SO42? and NH4+ were comparable, while those of NO3?, OC, and EC were around 20%, 40%-50%, and 70%-80%, respectively, higher at urban than rural sites, indicating the regional scale impacts of SO42? and NH4+ and effects of local sources on OC and EC. Monthly variations generally showed summertime peaks for SO42? and wintertime peaks for NO3?, but those of NH4+, OC, and EC exhibited different seasonality at different locations.  相似文献   
6.
The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.  相似文献   
7.
In the frame of PRISMA II Project samples for plankton analyses were carried out during four cruises (June, 1996; February and June, 1997; February, 1998) in order to assess the relative importance in term of biomasses of the three main size fractions (pico- <2 r µm, nano- 2-20 r µm and micro-plankton >20 r µm). Spatial and temporal distribution of the three plankton fractions were described as abundance and contribution to the total carbon content in an area between Po River mouth and Rimini. The relative contribution of picoplankton resulted higher in the offshore zone, while that of nanoplankton in the inshore waters. In February 1998 microphytoplankton, mainly constituted by diatoms, was very abundant in the inshore waters. Micro-zooplankton was always very scarce. Cluster analyses performed on these data grouped the stations on the basis of their community structure, and agreed with the hydrological features. Small size classes contributed more significantly to the total plankton carbon content in most of the situations. Microplankton fraction contribution was relevant only during spring diatom bloom of February 1998 and with a less extent in the confined coastal summer blooms.  相似文献   
8.
9.
About 3600 tonnes food waste are discarded in the landfills in Hong Kong daily. It is expected that the three strategic landfills in Hong Kong will be exhausted by 2020. In consideration of the food waste management environment and community needs in Hong Kong, as well as with reference to the food waste management systems in cities such as Linköping in Sweden and Oslo in Norway, a framework of food waste separation, collection, and recycling for food waste valorization is proposed in this paper. Food waste can be packed in an optic bag (i.e., a bag in green color), while the residual municipal solid waste (MSW) can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations, in which food waste is separated from the residual MSW using an optic sensor. On the one hand, the sorted food waste can be converted into valuable materials (e.g., compost, swine feed, fish feed). On the other hand, the sorted food waste can be sent to the proposed Organic Waste Treatment Facilities and sewage treatment works for producing biogas. The biogas can be recovered to produce electricity and city gas (i.e., heating fuel for cooking purpose). Due to the challenges faced by the value-added products in Hong Kong, the biogas is recommended to be upgraded as a biogas fuel for vehicle use. Hopefully, the proposed framework will provide a simple and effective approach to food waste separation at source and promote sustainable use of waste to resource in Hong Kong.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号