首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   3篇
  国内免费   2篇
环境安全   162篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   9篇
  2014年   6篇
  2013年   9篇
  2012年   12篇
  2011年   10篇
  2010年   11篇
  2009年   5篇
  2008年   6篇
  2007年   10篇
  2006年   10篇
  2005年   3篇
  2004年   8篇
  2003年   5篇
  2002年   9篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
1.
西印度洋(WIO)地区以其迷人的海岸带、丰富的海洋生物多样性以及富饶的海洋和海岸带资源而著称.但是地处WIO地区的许多国家像肯尼亚、莫桑比克、索马里、南非、坦桑尼亚、科摩罗、马达加斯加、毛里求斯、留尼旺、塞舌尔等却极度贫困,特别是近二三十年以来,该地区的环境退化现象以及自然资源和生物多样性的下降越来越明显.  相似文献   
2.
The contribution investigates the solid waste management system in Ha Noi under consideration of the interrelation between climate change effects and landfill management by means of a cause-and-effect-analysis as well as water balances using the HELP 3.95 model and gas emission data, followed by a Strength, Weakness, Opportunities, Threats (SWOT) analysis. Even landfills are sources of methane (CH4) emissions they are also impacted by climate change. The main effects on landfill sites are the change of climatic conditions, namely the regional water balance, extreme precipitation and storm events. The results of the water balance model results show that a geomembrane surface sealing can reduce the leachate formation significantly, a fact that is also valid for the climate change scenario with higher precipitation. The risk of flooding and erosion at the landfill sites increases, which will require a customized water management. In parallel landfill gas offers the opportunity for recovery of Greenhouse Gases (GHG) and the generation of renewable energy. Some further management options are wind turbines, photovoltaic systems or biomass for biogas conversion, which was grown on closed landfill sites. The inclusion of climate friendly management options of closed landfills in a “Good Landfill Aftercare Practice” is recommended.  相似文献   
3.
BACKGROUND, AIM AND SCOPE: With respect to the enormous increase of chemical production in the last decades and the tens of thousands of individual chemicals on the market, the permanent improvement of chemical management is a permanent target to achieve the goals of sustainable consumption and production set by the WSSD in Johannesburg 2002. MAIN FEATURES: Several approaches exist to describe sustainability of chemistry. However, commonly agreed criteria are still missing. There is no doubt that products of modern chemistry help to achieve important goals of sustainability and that significant improvements have occurred regarding direct releases from production sites, but several facts demonstrate that chemistry is far from being sustainable. Still too many chemicals exhibit hazardous characteristics and pose a risk to health and environment. Too many resources are needed to produce chemicals and finished products. RESULTS AND CONCLUSION: Therefore, a strategy for sustainability of chemistry should be developed which comprises the following main elements: 1. Sustainable chemicals: sustainable chemical management includes a regulatory framework which makes no difference between new and existing chemicals, contains efficient information flow through the supply chain which allows users to handle chemicals safely and offers an authorisation procedure and/or an efficient restriction procedure for substances of high concern. This regulatory scheme should promote the development of inherently safe chemicals. 2. Sustainable chemical production: Sustainable chemical production needs the development and implementation of emerging alternative techniques like selective catalysis, biotechnology in order to release less CO2 and less toxic by-products, to save energy and to achieve higher yields. Information exchange on best available techniques (BAT) and best environmental practices (BEP) may help to promote changes towards more sustainability. 3. Sustainable products: An integrated product policy which provides a framework for sustainable products promotes the development of products with a long-term use phase, low resource demand in production and use, low emission of hazardous substances and properties suitable for reuse and recycling. This may be promoted by eco-labelling, chemical leasing concepts and extended information measures to enhance the demand of consumers and various actors in the supply chain for sustainable products. RECOMMENDATION AND PERSPECTIVE: Important tools for the promotion of sustainable chemistry are the abolition of barriers for innovation in legislation and within the chemical industry, more transparency for all users of chemical products, a new focus on sustainability in education and research, and a new way of thinking in terms of sustainability.  相似文献   
4.
In this research, toxicological safety of two newly developed methods for the treatment of landfill leachate from the Piškornica (Croatia) sanitary landfill was investigated. Chemical treatment procedure combined chemical precipitation with CaO followed by coagulation with ferric chloride and final adsorption by clinoptilolite. Electrochemical treatment approach included pretreatment with ozone followed by electrooxidation/electrocoagulation and final polishing by microwave irradiation. Cell viability of untreated/treated landfill leachate was examined using fluorescence microscopy. Cytotoxic effect of the original leachate was obtained for both exposure periods (4 and 24 h) while treated samples showed no cytotoxic effect even after prolonged exposure time. The potential DNA damage of the untreated/treated landfill leachate was evaluated by the comet assay and cytokinesis-block micronucleus (CBMN) assay using either human or plant cells. The original leachate exhibited significantly higher comet assay parameters compared to negative control after 24 h exposure. On the contrary, there was no significant difference between negative control and chemically/electrochemically treated leachate for any of the parameters tested. There was also no significant increase in either CBMN assay parameter compared to the negative control following the exposure of the lymphocytes to the chemically or electrochemically treated landfill leachate for both exposure periods while the original sample showed significantly higher number of micronuclei, nucleoplasmic bridges and nuclear buds for both exposure times. Results suggest that both methods are suitable for the treatment of such complex waste effluent due to high removal efficiency of all measured parameters and toxicological safety of the treated effluent.  相似文献   
5.
6.
7.
This study aimed to evaluate the influence of sub‐daily precipitation time steps on model performance and hydrological components by applying the Green and Ampt infiltration method using the Soil and Water Assessment Tool (SWAT). Precipitation was measured at a resolution of 0.1 mm and aggregated to 5‐, 15‐, 30‐, and 60‐min time steps. Daily discharge data over a 10‐year period were used to calibrate and validate the model. Following a global sensitivity analysis, relevant parameters were optimized through an automatic calibration procedure using SWAT‐CUP for each time step. Daily performance statistics were almost equal among all four time steps (NSE ≈ 0.47). Discharge mainly consisted of groundwater flow (55%) and tile flow (42%), in reasonable proportions for the investigated catchment. In conclusion, model outputs were almost identical, showing simulations responded nearly independently of the chosen precipitation time step. This held true for (1) the selection of sensitive parameters, (2) performance statistics, (3) the shape of the hydrographs, and (4) flow components. However, a scenario analysis revealed that the precipitation time step becomes important when saturated hydraulic conductivities are low and curve numbers are high. The study suggests that there is no need in using precipitation time steps <1 h for lowland catchments dominated by soils with a low surface runoff potential if daily flow values are being considered. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
8.
We investigated the possibility of re-using remediated soils for new bioremediation projects by spiking these soils with waste oil sludge in laboratory based microcosms. The level of Total Petroleum Hydrocarbon (TPH) reduction was high (>80%) in naturally attenuated microcosms and was not significantly improved by biostimulation, bioaugmentation and the combined treatment of bioaugmentation and biostimulation by week 12. This indicated that the observed TPH reduction might have been related to the soil's inherent hydrocarbon-degrading potential. Microbial community analysis (16S rDNA and ITS-based Denaturing Gradient Gel Electrophoresis fingerprints) confirmed the dominance of hydrocarbon degrading genera such as Alcanivorax and Scedosporium. Cluster and Shannon diversity analysis revealed similar but stable bacterial and fungal communities in naturally attenuated and amended microcosms indicating that rapid reduction in TPH may not always be accompanied by changes in soil microbial communities. This study has therefore shown that soils previously used for bioremediation can have an improved hydrocarbon degrading potential which was successfully re-harnessed for new projects. This ability to re-harness this potential is attractive because it substantially reduces operational costs as no additional bioremediation treatments are needed. It can also extend a landfill's lifespan as soils can be re-used again before landfill disposal.  相似文献   
9.
Cadmium solubility and sorption in an arable clay loam soil that had received sewage sludge for 41 years were compared to an unsludged control in batch studies. Soil pH dominated Cd sorption, explaining >92% of the variation in Kd values in both treatments. At any pH, Cd sorption was apparently slightly but significantly (p < 0.05) smaller in the sludge-amended soil compared to the control, even though the organic carbon content was 70% larger and the ammonium oxalate-extractable iron content was roughly doubled. Correction for dissolved organic carbon (DOC) complexation with the speciation model WHAM reduced the difference in sorption between treatments, but the sludged soil still had significantly smaller Kd values (p < 0.01). Batch equilibrations without addition of Cd showed that there was no significant difference in the solubility of "native" cadmium (defined as EDTA-extractable Cd) in sludged and control soils. The reason for the lack of increase in Cd sorption in the sludge-amended soil has not been established, but it may be due to competition for sorption sites on humic compounds with sludge-derived Fe and trace metals such as zinc. The fact that the pyrophosphate-extractable (i.e., organically associated) iron content was seven times larger in the sludged soil provides some supporting evidence for this hypothesis.  相似文献   
10.

Purpose  

Polychlorinated biphenyls (PCBs) represent a large group of recalcitrant environmental pollutants, differing in the number of chlorine atoms bound to biphenyl ring. Due to their excellent technological properties, PCBs were used as heat-transfer media, for filling transformers and condensers, as paint additives, etc. With increasing knowledge of their toxicity, transfer to food chains and accumulation in living organisms, their production ended in most countries in the 1970s and in 1984 in the former Czechoslovakia. But even a quarter of century after the PCB production ceased, from contaminated areas, the volatile PCBs evaporate and contaminate much larger areas even at very distant parts of the world. For this reason, PCBs still represent a global problem. The main method of PCB removal from contaminated environment is at present the expensive incineration at high temperatures. With the aim of finding effective alternative approaches, we are studying biological methods for PCB removal from the environment. In this paper, we summarise 10 years of studies using long-term PCB-contaminated soil from a dumpsite in South Bohemia, targeted for the use of plants (phytoremediation) and their cooperation with microorganisms in the root zone (rhizoremediation).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号