首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
环境安全   14篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2016年   1篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - Extensive studies have shown that doping can enhance the properties of graphene, but the application to real industrial wastewater treatment and...  相似文献   
2.
This study explored the feasibility of using residual biomass to both mitigate greenhouse gas (GHG) emissions and remediate water contaminated by hydrocarbons. Using produced (process-affected) water from Canada’s oil sands operations as a case study, activated biochar (ACB) was found to have a higher affinity to organics than activated coal and removed 75 % of total organic carbon (TOC) from produced water in steam-assisted gravity drainage (SAGD) operations or 90 % of the TOC from synthetic tailings (ST) water sample. Up to 6 Tg dry biomass year?1 would be required to treat the waters associated with the 93?×?106-m3 of bitumen recovered per year. Landfilling the spent ACB and flaring any biogas produced were estimated to provide a greater GHG benefit than the combustion of the biochar + organics for heat to offset natural gas demand. Net costs for the ACB were about 13.84?$?m?3 bitumen for SAGD operations and 1.76?$?m?3 bitumen for mining operations. The values for mining operations justify further work to create a value chain that will integrate bioprocesses into the fossil fuel industry.  相似文献   
3.
Environmental Science and Pollution Research - A facile, feasible, and green synthesis via an electrochemical exfoliation process was applied to synthesize nitrogen-doped MgO/graphene nanocomposite...  相似文献   
4.
Soil concentrations and degradation rates of methyl isothio-cyanate (MITC), chloropicrin (CP), 1,3-dichloropropene (1,3-D), and dimethyl disulfide (DMDS) were determined under fumigant application scenarios representative of commercial raised bed, plastic mulched vegetable production systems. Five days after application, 1,3-D, MITC, and CP were detected at concentrations up to 3.52, 0.72, and 2.45 μg cm, respectively, in the soil atmosphere when applications were made in uniformly compacted soils with a water content >200% of field capacity and covered by a virtually impermeable or metalized film. By contrast, DMDS, MITC, and CP concentrations in the soil atmosphere were 0.81, 0.02, and 0.05 μg cm, respectively, 5 d after application in soil containing undecomposed plant residue, numerous large (>3 mm) clods, and water content below field capacity and covered by low-density polyethylene. Ranked in order of impact on the persistence of fumigants in soil were soil water content (moisture), soil tilth (the physical condition of soil as related to its fitness as a planting bed), the type of plastic film used to cover fumigated beds, and soil texture. Fumigants were readily detected 13 d after application when applied in uniformly compacted soils with water contents >200% of capacity and covered by a virtually impermeable or metalized film. By contrast, 1,3-D and MITC had dissipated 5 d after application in soils with numerous large (>3 mm) clods and water contents below field capacity that were covered by low-density polyethylene. Soil degradation of CP, DMDS, and MITC were primarily attributed to biological mechanisms, whereas degradation of 1,3-D was attributed principally to abiotic factors. This study demonstrates improved soil retention of agricultural fumigants in application scenarios representative of good agricultural practices.  相似文献   
5.
Ground-level area sources, such as those associated with the use of agricultural fumigants, waste disposal sites, wastewater lagoons, and other applications, present a challenge in terms of characterizing atmospheric flux as a function of time. Studies are costly in terms of field activities and laboratory analysis. The optimization of field study design, therefore, is essential to conduct cost-effective research. The collection of on-field profile data for airborne concentration, wind speed, and wind direction can be used in conjunction with the integrated horizontal flux (IHF) method to empirically compute complex source terms as a function of time. This paper focuses on complicating factors and field study design issues for the use of the IHF method. Insights and examples are drawn from five field research studies. The methods and results of characterizing the uncertainty and method precision in the emission fitting for the IHF method also are presented.  相似文献   
6.
Atmospheric emission of methyl isothiocyanate (MITC), chloropicrin (CP), 1,3-dichloropropene (1,3-D), and dimethyl disulfide (DMDS) were measured in the field under fumigant application scenarios representative of raised bed–plastic-mulched crop production systems. For three fumigation sites located in Florida, cumulative emissions of 1,3-D, MITC and CP were less than 11%, 6% and 2%, respectively. For three fumigation sites in located in Georgia, cumulative emissions of MITC and CP were <13% and 12%, respectively while DMDS emissions varied from 37% to 95%. In the Florida sites, emission peak flux of CP occurred within the first 6 h after application. Peak emission of 1,3-D and MITC occurred between 100 and 144 h after application. In the Georgia sites where fumigated soil was covered by low density polyethylene (LDPE) plastic, emission peak flux of DMDS and MITC occurred between 12and 48 h after application. Key factors affecting atmospheric emissions were soil moisture, soil tilth and the resistance to fumigant diffusion of the plastic film used to cover soil following application. This study demonstrated reduced atmospheric emissions of agricultural fumigants under commercial production conditions when applied using good agricultural practices including soil water contents above field capacity, uniform soil tilth in the fumigation zone and the use of metalized or virtually impermeable films to further reduce fumigant emissions. The results of this study show a need for regional flux studies due to the various interactions of soil and climate with local agricultural land management practices.  相似文献   
7.
Plastic tarps are commonly used in raised bed strawberry production to minimize emissions of preplant soil fumigants and are left in place throughout the growing season as part of the standard cultural practices. Soil amendments with chemicals such as thiosulfate (S2O3(2-)) can reduce fumigant emissions. A field study was conducted near Santa Maria, CA to determine the effects of low density polyethylene (LDPE) and virtually impermeable film (VIF) over raised-beds and applying potassium thiosulfate (KTS) in furrows on reducing chloropicrin (CP) emissions from a strawberry field. Four fields (or treatments) were tested with 224 kg ha(-1) CP drip-applied threecm under the soil surface. The CP flux from bed tops and furrows and gas-phase concentrations under the tarps were monitored for five d. The CP emission flux and concentration under tarp were highest immediately following application. Diurnal temperature change affected CP concentration and emission fluxes (higher values during the day and lower at night). Slightly higher CP cumulative emission occurred using LDPE tarp (19%) compared to VIF (17%). Normalized flux (CP emission flux from the beds divided by CP concentration under the tarp) being estimated from field measurement was slightly higher for LDPE than VIF indicating different tarp permeability in the field. Because of extremely low emissions from the furrows (<0.2% of total emission loss), KTS application to furrow treatments did not show further emission reductions than non-KTS treatments. This indicates that emission reduction should focus on the tarp above raised-beds when fumigant was drip-applied near bed-surface.  相似文献   
8.
Journal of Polymers and the Environment - Microplastics?&lt;?20&nbsp;μm are being increasingly reported in treated drinking water as well as in surface waters. As such,...  相似文献   
9.
Emissions of soil fumigants are regulated to protect air quality in California. Irrigation prior to fumigation can reduce fumigant emissions at relatively low costs; however, the optimum range of soil water content that reduces emissions without reducing efficacy is not clearly defined. The objective of this study was to determine the effects of soil water content [at 30, 45, 60, 75, 90 and 100% field capacity (FC)] on the emission and distribution of fumigants 1,3-dichloropropene (1,3-D) and chloropicrin (CP) in columns packed with a sandy loam soil. After injecting equal amounts of cis-1,3-D, trans-1,3-D, and CP, fumigant emissions and distribution in soil were monitored for 14 days. Emissions of all three compounds showed similar response to soil water content except that CP emissions were lower than both isomers of 1,3-D. The emission peak flux was highest and occurred earliest in the driest soil while it was reduced and delayed as soil water content increased. After the peak, emission flux decreased rapidly in the driest soil but more slowly in higher water content treatments. Initially, higher soil water content resulted in substantially lower cumulative emissions among the treatments, but as time progressed, the differences in cumulative emissions decreased or even disappeared. These trends were likely due to the effect of the closed-bottom short soil columns which allowed fumigants to only move upward and contribute to emission. Higher fumigant concentrations in the soil–gas phase were observed in high soil water content treatments, due to less emission loss and more fumigant retained in the soil.  相似文献   
10.
Preplant soil fumigation is an important pest management practice in coastal California strawberry production regions. Potential atmospheric emissions of fumigants from field treatment, however, have drawn intensive environmental and human health concerns; increasingly stringent regulations on fumigant use have spurred research on low-emission application techniques. The objectives of this research were to determine the effects of a new low-permeability film, commonly known as totally impermeable film (TIF), on fumigant emissions and on fumigant distribution in soil. A 50/50 mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) was shank-applied at 314 kg ha in two location-separate field plots (0.4 ha each) in Ventura County, California, in fall 2009. One plot was surface-covered with standard polyethylene (PE) film, and the other was covered with TIF immediately after fumigant application. Data collection included emissions, soil-gas phase concentration profile, air concentration under the film, and soil residuals of the applied fumigants. Peak emission flux of 1,3-D and CP from the TIF field was substantially lower than from the PE field. Total through-film emission loss was 2% for 1,3-D and <1% for CP from the TIF field during a 6-d film covering period, compared with 43% for 1,3-D and 12% for CP from the PE field. However, on film-cutting, greater retention of 1,3-D in the TIF field resulted in a much higher emission surge compared with the PE field, while CP emissions were fairly low in both fields. Higher concentrations and a more uniform distribution in the soil profile for 1,3-D and CP were observed under the TIF compared with the PE film, suggesting that the TIF may allow growers to achieve satisfactory pest control with lower fumigant rates. The surging 1,3-D emissions after film-cutting could result in high exposure risks to workers and bystanders and must be addressed with additional mitigation measures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号