首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环境安全   3篇
  2020年   1篇
  2014年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
ABSTRACT

Using the Community Multiscale Air Quality (CMAQ) model and the Benefits Mapping and Analysis Program – Community Edition (BenMAP-CE) tool, we estimate the benefits of anthropogenic emission reductions between 2002 and 2011 in the Eastern United States (US) with respect to surface ozone concentrations and ozone-related health and economic impacts, during a month of extreme heat, July 2011. Based on CMAQ simulations using emissions appropriate for 2002 and 2011, we estimate that emission reductions since 2002 likely prevented 10– 15 ozone exceedance days (using the 2011 maximum 8-hr average ozone standard of 75 ppbv) throughout the Ohio River Valley and 5– 10 ozone exceedance days throughout the Washington, DC – Baltimore, MD metropolitan area during this extremely hot month. CMAQ results were fed into the BenMAP-CE tool to determine the health and health-related economic benefits of anthropogenic emission reductions between 2002 and 2011. We estimate that the concomitant health benefits from the ozone reductions were significant for this anomalous month: 160–800 mortalities (95% confidence interval (CI): 70–1,010) were avoided in July 2011 in the Eastern U.S, saving an estimated $1.3–$6.6 billion (CI: $174 million–$15.5 billion). Additionally, we estimate that emission reductions resulted in 950 (CI: 90–2,350) less hospital admissions from respiratory symptoms, 370 (CI: 180–580) less hospital admissions for pneumonia, 570 (CI: 0–1650) less Emergency Room (ER) visits from asthma symptoms, 922,020 (CI: 469,960–1,370,050) less minor restricted activity days (MRADs), and 430,240 (CI: ?280,350–963,190) less symptoms of asthma exacerbation during July 2011.

Implications: We estimate the benefits of air pollution emission reductions on surface ozone concentrations and ozone-related impacts on human health and the economy between 2002 and 2011 during an extremely hot month, July 2011, in the eastern United States (US) using the CMAQ and BenMAP-CE models. Results suggest that, during July 2011, emission reductions prevented 10-15 ozone exceedance days in the Ohio River Valley and 5-10 ozone exceedance days in the Mid Atlantic; saved 160-800 lives in the Eastern US, saving $1.3 - $6.5 billion; and resulted in 950 less hospital admissions for respiratory symptoms, 370 less hospital admissions for pneumonia, 570 less Emergency Room visits for asthma symptoms, 922,020 less minor restricted activity days, and 430,240 less symptoms of asthma exacerbation.  相似文献   
2.
Verkhne Viiskii Reservoir (surface area = 6.0 km2; volume = 36.0 hm3), one of two water supply reservoirs for the City of Nizhnii Tagil, is located in a forested watershed (drainage area = 272 km2) in the Ural Mountain region of the Russian Federation. This study, conducted in August 1999, provides a benchmark limnological assessment against which to gauge future change. While currently meeting local water quality requirements for drinking water sources, the reservoir exhibits moderately eutrophic characteristics, including elevated epilimnetic nutrient (total P = 0.048-0.115 mg L(-1); total N = 0.421-0.508 mg L(-1)) and chlorophyll (4-8.4 microg L(-1)) concentrations, and a high rate of hypolimnetic oxygen depletion (4.07 g m(-3) mo(-1)).  相似文献   
3.
Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (?42.6 % pasture/grassland and ?57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the farms were abandoned, leaving large bare areas with highly eroded soil. Starting in 1938, Clemson reforested almost 30 % of the watershed. Currently, three fourths of the watershed is forestland, with a limited coverage of small farms and residential developments. Monitoring water quality is essential in maintaining adequate freshwater supply. Water quality monitoring focuses mainly on the collection of field data, but current water quality conditions depend on the cumulative impacts of land cover change over time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号