首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1423178篇
  免费   114830篇
  国内免费   3357篇
医药卫生   1541365篇
  2021年   11116篇
  2019年   11930篇
  2018年   16859篇
  2017年   12872篇
  2016年   14447篇
  2015年   16257篇
  2014年   22908篇
  2013年   33848篇
  2012年   46015篇
  2011年   48615篇
  2010年   28528篇
  2009年   27346篇
  2008年   44889篇
  2007年   47354篇
  2006年   47853篇
  2005年   46343篇
  2004年   44249篇
  2003年   42142篇
  2002年   40632篇
  2001年   73344篇
  2000年   74854篇
  1999年   61889篇
  1998年   17147篇
  1997年   15557篇
  1996年   15711篇
  1995年   14927篇
  1994年   13524篇
  1993年   12688篇
  1992年   46080篇
  1991年   43735篇
  1990年   41729篇
  1989年   39815篇
  1988年   36392篇
  1987年   35572篇
  1986年   33086篇
  1985年   31553篇
  1984年   24023篇
  1983年   20188篇
  1982年   12300篇
  1981年   10852篇
  1979年   20855篇
  1978年   14671篇
  1977年   12175篇
  1976年   11443篇
  1975年   11714篇
  1974年   14082篇
  1973年   13634篇
  1972年   12727篇
  1971年   11552篇
  1970年   10975篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
ABSTRACT

Communication between health professionals and patients is an intergroup phenomenon where the health professional has the most power and status. Over the past few decades, there has been a steady increase in the availability to patients of information about healthcare and specific diseases on the Internet. In this paper, we ask whether the use of Internet health information assists patients to manage their consultations with health professionals better and whether it alters the intergroup dynamic by providing a more equal status for patients. In this study 370 participants from Australia and Canada completed a survey that included a ‘willingness to communicate with health professionals’ scale. They also commented on their use and trust of Internet health information. Thematic analysis suggests that patients’ use of Internet health information serves as a broker between patients and their health provider in health consultations. We discuss the implications of these findings for health practitioners as they address how easier Internet access influences patient interactions with health professionals. We consider future research directions these finding provide in explaining communication behaviour in this context.  相似文献   
3.

Background Context

Low back pain (LBP) is a common complaint in clinical practice of multifactorial origin. Although obesity has been thought to contribute to LBP primarily by altering the distribution of mechanical loads on the spine, the additional contribution of obesity-related conditions such as diabetes mellitus (DM) to LBP has not been thoroughly examined.

Purpose

To determine if there is a relationship between DM and LBP that is independent of body mass index (BMI) in a large cohort of adult survey participants.

Study Design

Retrospective analysis of prospectively collected National Health and Nutrition Examination Survey (NHANES) data to characterize associations between LBP, DM, and BMI in adults subdivided into 6 subpopulations: normal weight (BMI 18.5–25), overweight (BMI 25–30), and obese (BMI >30) diabetics and nondiabetics. Diabetes was defined with glycohemoglobin A1c (HbA1c) 6.5%.

Patient Sample

11,756 participants from NHANES cohort.

Outcome Measures

Percentage of LBP reported.

Methods

LBP reported in the 1999-2004 miscellaneous pain NHANES questionnaire was the dependent variable examined. Covariates included HbA1c, BMI, age, and family income ratio to poverty as continuous variables as well as race, gender, and smoking as binary variables. Individuals were further subdivided by weight class and diabetes status. Regression and graphical analyses were performed on the study population as a whole and also on subpopulations.

Results

Increasing HbA1c did not increase the odds of reporting LBP in the full cohort. However, multivariate logistic regression of the 6 subpopulations revealed that the odds of LBP significantly increased with increasing HbA1c levels in normal weight diabetics. No other subpopulations reported significant relationships between LBP and HbA1c. LBP was also significantly associated with BMI for normal weight diabetics and also for obese subjects regardless of their DM status.

Conclusions

LBP is significantly related to DM status, but this relationship is complex and may interact with BMI. These results support the concept that LBP may be improved in normal weight diabetic subjects with improved glycemic control and weight loss, and that all obese LBP subjects may benefit from improved weight loss alone.  相似文献   
4.

Background

The purpose of the study was to evaluate the association between fetal echocardiographic measurements and the need for intervention (primary coarctation repair, staged coarctation repair, or catheter intervention) in prenatally diagnosed coarctation of the aorta.

Methods

A single-centre retrospective cohort study (2005-2015) of 107 fetuses diagnosed with suspected coarctation of the aorta in the setting of an apex-forming left ventricle and antegrade flow across the mitral and aortic valves.

Results

Median gestational age at diagnosis was 32 weeks (interquartile range, 23-35 weeks). Fifty-six (52%) did not require any neonatal intervention, 51 patients (48%) underwent a biventricular repair. In univariable analysis, an increase in ascending aorta (AAo) peak Doppler flow velocity (odds ratio [OR], 1.40 [95% confidence interval [CI], 1.05-1.91] per 20 cm/s; P = 0.03) was associated with intervention. No intervention was associated with larger isthmus size (OR, 0.23; P < 0.001), transverse arch diameter (OR, 0.23; P < 0.001), and aortic (OR, 0.72; P = 0.02), mitral (OR, 0.58; P = 0.001), and AAo (OR, 0.53; P < 0.001) z-scores. In multivariable analysis, higher peak AAo Doppler (OR, 2.51 [95% CI, 1.54-4.58] per 20 cm/s; P = 0.001) and younger gestational age at diagnosis (OR, 0.81 [95% CI, 0.70-0.93] per week; P = 0.005) were associated with intervention, whereas a higher AAo z-score (OR, 0.65 [95% CI, 0.43-0.94] per z; P = 0.029) and transverse arch dimension (OR, 0.44 [95% CI, 0.18-0.97]; P = 0.05) decreased the risk of intervention.

Conclusions

In prenatally suspected coarctation, the variables associated with intervention comprised smaller AAo and transverse arch size, earlier gestational age at diagnosis, and the additional finding of a higher peak AAo Doppler.  相似文献   
5.

Introduction

Physician communication impacts patient outcomes. However, communication skills, especially around difficult conversations, remain suboptimal, and there is no clear way to determine the validity of entrustment decisions. The aims of this study were to 1) describe the development of a simulation-based mastery learning (SBML) curriculum for breaking bad news (BBN) conversation skills and 2) set a defensible minimum passing standard (MPS) to ensure uniform skill acquisition among learners.

Innovation

An SBML BBN curriculum was developed for fourth-year medical students. An assessment tool was created to evaluate the acquisition of skills involved in a BBN conversation. Pilot testing was completed to confirm improvement in skill acquisition and set the MPS.

Outcomes

A BBN assessment tool containing a 15-item checklist and six scaled items was developed. Students' checklist performance improved significantly at post-test compared to baseline (mean 65.33%, SD = 12.09% vs mean 88.67%, SD = 9.45%, P < 0.001). Students were also significantly more likely to have at least a score of 4 (on a five-point scale) for the six scaled questions at post-test. The MPS was set at 80%, requiring a score of 12 items on the checklist and at least 4 of 5 for each scaled item. Using the MPS, 30% of students would require additional training after post-testing.

Comments

We developed a SBML curriculum with a comprehensive assessment of BBN skills and a defensible competency standard. Future efforts will expand the mastery model to larger cohorts and assess the impact of rigorous education on patient care outcomes.  相似文献   
6.
Abstract

Objectives: This study examined word use as an indicator of interpersonal positive reframing in daily conversations of couples coping with breast cancer and as a predictor of stress.

Design: The Electronically Activated Recorder (EAR) and Linguistic Inquiry and Word Count (LIWC) were used to examine naturally occurring word use conceptually linked to positive reframing (positive emotion, negative emotion, and cognitive processing words).

Sample: Fifty-two couples coping with breast cancer.

Methods: Couples wore the EAR, a device participants wear, that audio-recorded over one weekend (>16,000 sound files), and completed self-reports of positive reframing (COPE) and stress (Perceived Stress Scale). LIWC, a software program, measured word use.

Findings: Both partners’ word use (i.e., positive emotion and cognitive processing words) was associated with their own reported positive reframing, and spouses’ word use was also indicative of patients’ positive reframing. Results also revealed that, in general, words indicating positive reframing predicted lower levels of stress.

Conclusions: Findings supported the hypothesis that partners—and particularly spouses of breast cancer patients—may assist each other’s coping by positively reframing the cancer experience and other negative experiences in conversation.  相似文献   
7.
8.
Climate change is increasing global temperatures and intensifying the frequency and severity of extreme heat waves. How organisms will cope with these changes depends on their inherent thermal tolerance, acclimation capacity, and ability for evolutionary adaptation. Yet, the potential for adaptation of upper thermal tolerance in vertebrates is largely unknown. We artificially selected offspring from wild-caught zebrafish (Danio rerio) to increase (Up-selected) or decrease (Down-selected) upper thermal tolerance over six generations. Selection to increase upper thermal tolerance was also performed on warm-acclimated fish to test whether plasticity in the form of inducible warm tolerance also evolved. Upper thermal tolerance responded to selection in the predicted directions. However, compared to the control lines, the response was stronger in the Down-selected than in the Up-selected lines in which evolution toward higher upper thermal tolerance was slow (0.04 ± 0.008 °C per generation). Furthermore, the scope for plasticity resulting from warm acclimation decreased in the Up-selected lines. These results suggest the existence of a hard limit in upper thermal tolerance. Considering the rate at which global temperatures are increasing, the observed rates of adaptation and the possible hard limit in upper thermal tolerance suggest a low potential for evolutionary rescue in tropical fish living at the edge of their thermal limits.

Globally, both mean and extreme environmental temperatures are increasing due to climate change with mean temperatures predicted to increase by 0.3–4.8 °C by the end of the century (1, 2). Aquatic ectotherms are particularly vulnerable to rising temperatures as their body temperature closely tracks the environmental temperature (3). These organisms can avoid thermal stress by migrating to cooler waters, acclimating, and/or adapting genetically (46). For species with a limited dispersal ability (e.g., species from shallow freshwater habitats; ref. 7), acclimation and evolutionary adaptation are the only possible strategies. Furthermore, for ectotherms living at the edge of their upper thermal limits, an increase in extreme temperatures may generate temperature peaks that exceed physiological limits and cause high mortality (5, 810). Although this is expected to cause strong selection toward higher upper thermal tolerance, it is largely unknown, particularly within vertebrates, whether and at what rate organisms may adapt by evolving their thermal limits (1114). These are important issues because constrained or limited evolvability (15) of upper thermal tolerance could lead to population extinctions as climate change increases the severity of heat waves.Ectotherms can also increase their thermal limits through physiological and biochemical adjustments, in a process known as thermal acclimation when they are exposed to elevated temperatures for a period of time (16, 17). Thermal acclimation, sometimes called thermal compensation, is here used interchangeably with the term physiological plasticity as outlined by Seebacher et al. (18). In the wild, individuals may experience days or weeks of warmer temperatures prior to a thermal extreme. Through physiological plasticity, the severity of an ensuing thermal extreme may be reduced, thus increasing the chance for survival (19). Furthermore, in some cases, adaptation can be accelerated by plasticity (2022). This requires that the physiological mechanisms responsible for acclimation are also (at least partly) involved in the acute response; that is, that there is a positive genetic correlation between physiological plasticity and (acute) upper thermal tolerance. It is therefore crucial to quantify the evolutionary potential of upper thermal tolerance of fish populations threatened by climate change (23, 24) and to understand the link between the evolutionary response of upper thermal tolerance and physiological plasticity.Previously detected evolution of upper thermal tolerance generally points toward a slow process (12, 13, 2531). However, estimates of the evolutionary potential in upper thermal tolerance mostly come from studies on Drosophila (12, 25, 27, 32), and empirical evidence in aquatic ectotherms and specifically vertebrates is limited. The few studies that have been performed on fish show disparate responses to selection on heat tolerance even within the same species. Baer and Travis (33) detected no response to selection yet Doyle et al. (34) and Klerks et al. (28) detected selection responses with heritabilities of 0.2 in killifish (Heterandria formosa). Despite the typical asymmetry of thermal performance curves (3, 35), studies in vertebrates are limited to unidirectional estimates of evolutionary potential (28, 31, 33) or do not account for the direction of evolution when estimating heritability in upper thermal tolerance from breeding designs (36, 37). Furthermore, while several studies have found that populations with different thermal histories have evolved different levels of heat tolerance (2931), we still lack a good understanding of how physiological plasticity within a generation, in response to a short heat exposure, interacts with genetic changes during evolution of thermal tolerance.To investigate possible asymmetry in the evolutionary potential of upper thermal tolerance in a vertebrate species, we artificially selected offspring of wild-caught zebrafish (Danio rerio) to increase and decrease upper thermal tolerance for six generations. Furthermore, to disentangle the contribution of acclimation from the genetic response to increase upper thermal tolerance, we selected two lines that were exposed to a period of warm acclimation prior to a thermal challenge. The size (>20,000 phenotyped fish) and duration (six generations) of this study are unique in a vertebrate species for a climate change-relevant selection experiment, and the results provide critical and robust information on how tropical fish may adapt to a changing climate.Being a freshwater and tropical species, zebrafish are likely to be especially vulnerable to climate change (7, 38). In the wild, zebrafish can already be found living only a few degrees below their thermal limits (17, 39) and live in shallow streams and pools (40) that have the potential to rapidly warm during heat waves. Zebrafish therefore represent a species living at the edge of its thermal limit in which rapid adaptation of thermal tolerance would be particularly beneficial for its survival. Wild-caught zebrafish originating from different sites in West Bengal, India (17, 40), were used to maximize the genetic diversity of the parental population. These wild-caught zebrafish (n = 2,265) served as parents of the starting F0 generation (n = 1,800) on which we selected upper thermal tolerance for six generations. Upper thermal tolerance was measured as the critical thermal maximum (CTmax), a commonly used measure of an organism’s acute upper thermal tolerance (16, 41). CTmax is defined as the temperature at which an individual loses equilibrium (i.e., uncontrolled and disorganized swimming in zebrafish; ref. 42) during thermal ramping. Measuring CTmax is rapid, repeatable, and does not appear to harm zebrafish (42). CTmax is ecologically relevant because it is highly correlated with both tolerance to slow warming (43) and to the upper temperature range boundaries of wild aquatic ectotherms (9).Our selection experiment consisted of four treatment groups (Up-selected, Down-selected, Acclimated Up-selected, and Control) with two replicate lines in each treatment. We established these lines by selecting fish on their CTmax in the F0 generation with each line consisting of 150 individuals (see Methods for further details of F0 generation). The offspring of those fish formed the F1 generation that consisted of 450 offspring in each line. At each generation, the Up, Down, and Control lines were all held at optimal temperature (28 °C) (39), whereas the Acclimated Up-selected lines were acclimated to a supraoptimal temperature (32 °C) for 2 wk prior to selection (17). From the F1 to F6 generations, we measured CTmax for all 450 fish in each line and selected the 33% with the highest CTmax in the Up-selected and in the Acclimated Up-selected lines, and the 33% with the lowest CTmax in the Down-selected lines. In the Control lines, 150 fish were randomly selected, measured, and retained. Thus, CTmax was measured on a total of 3,000 fish per generation and 150 individuals remained in each of the eight lines after selection, forming the parents for the next generation. The nonselected lines (Control) represented a control for the Up-selected and Down-selected lines, while the Up-selected lines represented a control for the Acclimated Up-selected lines, because these two treatments solely differed by the acclimation period to which the latter were exposed before selection. Thus, differences in CTmax between Up-selected and Acclimated Up-selected lines represent the contribution of physiological plasticity to upper thermal tolerance. If the difference between these two treatments increases during selection, it would suggest that plasticity increases during adaptation to higher CTmax (i.e., the slope the reaction norm describing the relationship between CTmax and acclimation temperature would become steeper).After six generations of selection, upper thermal tolerance had evolved in both the Up-selected and the Down-selected lines (Fig. 1). In the Up-selected lines, upper thermal tolerance increased by 0.22 ± 0.05 °C (x̄ ± 1 SE) compared to the Control lines whereas the Down-selected lines displayed a mean upper thermal tolerance 0.74 ± 0.05 °C lower than the Control (Fig. 1B; estimates for replicated lines combined). The asymmetry in the response to selection was confirmed by the estimated realized heritability, which was more than twice as high in the Down-selected lines (h2 = 0.24; 95% CI: 0.19–0.28) than in the Up-selected lines (h2 = 0.10; 95% CI: 0.05–0.14; Fig. 2).Open in a separate windowFig. 1.Upper thermal tolerance (CTmax) of wild-caught zebrafish over six episodes of selection. Duplicated lines were selected for increased (Up-selected, orange lines and triangles) and decreased (Down-selected, blue lines and squares) upper thermal tolerance. In addition, we had two Control lines (green dashed lines and diamonds). The Up, Down, and Control lines were all acclimated to a temperature of 28 °C. In addition, two lines were selected for increased upper thermal tolerance after 2 wk of warm acclimation at 32 °C (Acclimated Up-selected, red lines and circles). At each generation, the mean and 95% CIs of each line are shown (n ∼ 450 individuals per line). (A) Absolute upper thermal tolerance values. (B) The response to selection in the Up and Down lines centered on the Control lines (dashed green line). Difference between Up-selected and Acclimated-Up lines are shown in Fig. 3. The rate of adaptation (°C per generation) is reported for each treatment using estimates obtained from linear mixed effects models using the Control-centered response in the Up-selected and Down-selected lines and the absolute response for the Acclimated-Up lines (SE = ±0.01 °C in all lines).Open in a separate windowFig. 2.Realized heritability (h2) of upper thermal tolerance (CTmax) in wild-caught zebrafish. The realized heritability was estimated for each treatment as the slope of the regression of the cumulative response to selection on the cumulative selection differential using mixed effect models passing through the origin with replicate as a random effect. Slopes are presented with their 95% CIs (shaded area) for the Down-selected lines (blue) and Up-selected lines (orange). Data points represent the mean of each replicate line (n ∼ 450) over six generations of selection. Average selection differentials are 0.57 (Down) and 0.39 (Up), respectively, see SI Appendix, Table S1 for more information.At the start of the experiment (F0), warm acclimation (32 °C) increased thermal tolerance by 1.31 ± 0.05 °C (difference in CTmax between the Up-selected and Acclimated Up-selected lines in Figs. 1A and and3),3), which translates to a 0.3 °C change in CTmax per 1 °C of warming. In the last generation, the effect of acclimation had decreased by 25%, with the Acclimated-Up lines having an average CTmax 0.98 ± 0.04 °C higher than the Up lines (Fig. 3). This suggests that, despite a slight increase in CTmax in the Acclimated Up-selected lines during selection, the contribution of plasticity decreased over the course of the experiment.Open in a separate windowFig. 3.Contribution of acclimation to the upper thermal tolerance in the Acclimated-Up selected lines at each generation of selection. The contribution of acclimation was estimated as the difference between the Up and Acclimated-Up selected lines. Points and error bars represent the estimates (±SE) from a linear mixed effects model with CTmax as the response variable; Treatment (factor with two levels: Up and Acclimated Up), Generation (factor with seven levels), and their interaction as the predictor variables; and replicate line as a random factor.During the experiment, the phenotypic variation of CTmax that was left-skewed at F0 increased in the Down-selected lines and decreased in the Up-selected lines (Fig. 4). At the F6 generation, phenotypic variance was four times lower in the Up-selected lines (0.09 ± 0.01 and 0.12 ± 0.02 °C2; variance presented for each replicate line separately and SE obtained by nonparametric bootstrapping) than in the Down-selected lines (0.41 ± 0.03 and 0.50 ± 0.04 °C2), which had doubled since the start of the experiment (F0: 0.20 ± 0.01 °C2, see SI Appendix, Fig. S1). In the Acclimated Up-selected lines, the phenotypic variance that was already much lower than the Control at the F0 also decreased and reached 0.06 ± 0.01 °C2 and 0.07 ± 0.01 °C2 for the two replicates at the last generation (SI Appendix, Fig. S1).Open in a separate windowFig. 4.Distribution of upper thermal tolerance (CTmax) in selected lines. (A) Distribution for each line at each generation (F0 to F6). In the F0 generation, histograms show the preselection distribution in gray for the nonacclimated fish, in dark green for the Control lines, and in red for the Acclimated-Up fish. In all subsequent generations the Down-selected lines are in blue, the Up-selected lines in yellow, the Control lines in dark green, and Acclimated-up lines in red. All treatments use two shades, one for each replicate line. Dashed lines represent the mean CTmax for each line (n ∼ 450 individuals). (B) Distribution of upper thermal tolerance at the start (F0, in gray) and the end (F6, in blue and yellow) of the experiment for the Up-selected and Down-selected lines. The dashed gray line represents the mean of the Up-selected and Down-selected lines in the F0 generation preselection (n ∼ 900 individuals). Dashed blue and yellow lines represent the mean CTmax for Up and Down-selected lines for the F6 generation (n ∼ 450 individuals).Together with the asymmetrical response to selection and the lower response of the Acclimated Up-selected lines, these changes in phenotypic variance suggest the existence of a hard-upper limit for thermal tolerance (e.g., major protein denaturation (44), similar to the “concrete ceiling” for physiological responses to warming (14)). Such a hard-upper limit is expected to generate a nonlinear mapping of the genetic and environmental effects on the phenotypic expression of CTmax. This nonlinearity will affect the phenotypic variance of CTmax when mean CTmax approaches its upper limit (SI Appendix, Fig. S2A). For example, with directional selection toward higher CTmax, genetic changes in upper thermal tolerance will translate into progressively smaller phenotypic changes. Similarly, warm acclimation that shifts CTmax upwards will also decrease phenotypic variation in CTmax (see differences in phenotypic variance between control and Acclimated lines at the F0). This hard ceiling can also explain why an evolutionary increase in CTmax reduces the magnitude of physiological plasticity in CTmax achieved after a period of acclimation (Fig. 3 and see SI Appendix, Fig. S2B). If the sum of the genetic and plastic contributions to CTmax cannot exceed a ceiling value, this should generate a zero-sum gain between the genetic and plastic determinants of thermal tolerance. An increase in the genetic contribution to CTmax via selection should thus decrease the contribution of plasticity. Selection for a higher CTmax should therefore negatively affect the slope of the reaction norm of thermal acclimation because acclimation will increase CTmax more strongly at low than high acclimation temperature (SI Appendix, Fig. S2B).To test this hypothesis, we measured CTmax in all selected lines at the final generation (F6) after acclimation to 24, 28, and 32 °C. At all three acclimation temperatures, the Acclimated-Up lines did not differ from the Up-selected lines (average difference 0.14 ± 0.08 °C; 0.12 ± 0.09 °C; 0.14 ± 0.09 °C; at 24, 28, and 32 °C respectively; Fig. 5). This suggests that warm acclimation prior to selection did not affect the response to selection. However, considering the within-treatment differences in CTmax between fish acclimated to 28 and 32 °C, we show that the gain in CTmax due to acclimation decreases in both the Up and Acclimated-Up treatments compared to the Control and Down treatments (SI Appendix, Fig. S3). This confirms a loss of thermal plasticity in both Up-selected treatments (Up and Acclimated-Up) at higher acclimation temperatures. Notably, the loss of thermal plasticity is not evident in fish acclimated to 24 and 28 °C, possibly because at these temperatures CTmax remains further away from its hard upper limit.Open in a separate windowFig. 5.Upper thermal tolerance (CTmax) of the selected lines measured at the last generation (F6) after acclimation at 24, 28, and 32 °C. The response is calculated as the mean difference in upper thermal tolerance (CTmax) relative to the Control lines. Large points and whiskers represent mean ±1 SE for each treatment (n = 120 individuals): Up-selected (orange triangles), Down-selected (blue squares), Acclimated Up-selected (red circles), and Control (green diamonds). Smaller translucent points represent means of each replicate line (n = 60 individuals). See SI Appendix, Fig. S3 for absolute CTmax values and model estimates.Acclimated Up-selected lines are perhaps the most ecologically relevant in our selection experiment. In the wild, natural selection on upper thermal tolerance may not result from increasing mean temperatures but through rapid heating events such as heat waves (45). During heat waves, temperature may rise for days before reaching critical temperatures. This gives individuals the possibility to acclimate and increase their upper thermal tolerance prior to peak temperatures. Our results show that while warm acclimation allowed individuals to increase their upper thermal tolerance, it did not increase the magnitude or the rate of adaptation of upper thermal tolerance.For the past two decades it has been recognized that rapid evolution, at ecological timescales, occurs and may represent an essential mechanism for the persistence of populations in rapidly changing environments (24, 46, 47). Yet, in the absence of an explicit reference, rates of evolution are often difficult to categorize as slow or rapid (48). For traits related to thermal tolerance or thermal performance, this issue is complicated by the fact that the scale on which traits are measured (temperature in °C) cannot meaningfully be transformed to a proportional scale. This prevents us from comparing rates of evolution between traits related to temperature with other traits measured on different scales (49, 50). However, for thermal tolerance, the rate of increase in ambient temperature predicted over the next century represents a particularly meaningful standard against which the rate of evolution observed in our study can be compared.In India and surrounding countries where zebrafish are native, heat waves are predicted to increase in frequency, intensity, and duration, and maximum air temperatures in some regions are predicted to exceed 44 °C in all future climate scenarios (51). Air temperature is a good predictor of water temperature in shallow ponds and streams where wild zebrafish are found (17, 40, 52, 53). Thus, strong directional selection on the thermal limits of zebrafish is very likely to occur in the wild. At first sight, changes in the upper thermal tolerance observed in our study (0.04 °C per generation) as well as the heritability estimates (Down-selected: h2 = 0.24, Up-selected: h2 = 0.10) similar to those obtained in fruit flies (Drosophila melanogaster) selected for acute upper thermal tolerance (Down-selected: h2 = 0.19, Up-selected: h2 = 0.12; ref. 12), suggest that zebrafish may just be able to keep pace with climate change and acutely tolerate temperatures of 44 °C predicted by the end of the century. However, several cautions make such an optimistic prediction unlikely.First, such an extrapolation assumes a generation time of 1 y, which is likely for zebrafish but unrealistic for many other fish species. Second, such a rate of evolution is associated with a thermal culling of two-thirds of the population at each generation, a strength of selection that may be impossible to sustain in natural populations exposed to other selection pressures such as predation or harvesting. Third, the heritability and rate of adaptation toward higher upper thermal tolerance observed here may be considered as upper estimates because of the potentially high genetic variance harbored by our parental population where samples from several sites were mixed. While mixing of zebrafish populations often occurs in the wild during monsoon flooding (54, 55), there are likely to be some isolated populations that may have a lower genetic diversity and adaptation potential than our starting population. Finally, and most importantly, the reduced phenotypic variance and decreased acclimation capacity with increasing CTmax observed in our study suggest the existence of a hard-upper limit to thermal tolerance that will lead to an evolutionary plateau similar to those reached in Drosophila selected for increased heat resistance over many generations (12, 56). Overall, the rate of evolution observed in our study is likely higher than what will occur in the wild and, based on this, it seems unlikely that zebrafish, or potentially other tropical fish species, will be able to acutely tolerate temperatures predicted by the end of the century. It is possible that other fish species, especially those living in cooler waters and with wider thermal safety margins, will display higher rates of adaptation than the ones we observed here, and more studies of this kind in a range of species are needed to determine whether slow adaptation of upper thermal tolerance is a general phenomenon.Transgenerational plasticity (e.g., epigenetics) has been suggested to modulate physiological thermal tolerance (57). However, the progressive changes in CTmax observed across generations in our study indicate that these changes were primarily due to genetic changes because effects of transgenerational plasticity are not expected to accumulate across generations. Therefore, the effects of transgenerational plasticity in the adaptation of upper thermal tolerance may be insufficient to mitigate impacts of climate change on zebrafish, yet the potential contribution of transgenerational plasticity is still an open question.By phenotyping more than 20,000 fish over six generations of selection, we show that evolution of upper thermal tolerance is possible in a vertebrate over short evolutionary time. However, the evolutionary potential for increased upper thermal tolerance is low due to the slow rate of adaptation compared to climate warming, as well as the diminishing effect of acclimation as adaptation progresses. Our results thus suggest that fish populations, especially warm water species living close to their thermal limits, may struggle to adapt with the rate at which water temperatures are increasing.  相似文献   
9.
10.

Aims

Variations of the anatomy of donor hepatic arteries increase the number of arterial anastomoses during liver transplantation and, possibly, the incidence of hepatic artery thrombosis (HAT). In this study, we describe the arterial anatomic variations in liver grafts procured and transplanted by a single center in Greece, the techniques of arterial anastomosis, and their effect on the incidence of early HAT.

Materials and Methods

From January 2013 to December 2017, the arterial anatomy of 116 grafts procured for liver transplantation were recorded, as well as the technique of arterial anastomosis and the incidence of early hepatic artery thrombosis (HAT <30 days).

Results

A single hepatic artery was recorded in 72.41% of the procured grafts, an aberrant left hepatic artery (accessory or replaced) in 18 grafts (15.52%), and an aberrant right hepatic artery (accessory or replaced) in 17 grafts (14.66%), while other variations were observed in less than 1% of the procured livers. Of the 116 primary liver transplantations, 6 patients (5.17%) developed early HAT <30 days. Two of these patients (1.72%) had 1 anastomosis of the hepatic artery and 4 (3.45%) had 2 anastomoses due to anatomic variations.

Conclusions

Anatomic variations of the hepatic artery in liver grafts is a common finding and increase the incidence of early HAT but not to a degree to make these grafts unusable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号