首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  国内免费   1篇
地球科学   57篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north–northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf–slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70–80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar morphological appearance to the present-day, basin margin reefs, crop out along these deeper submarine terraces and along the shelf–slope break. One fossil reef is exposed on the shelf across the Ayla high at about 60–63 m water depth but is either covered or eroded in the adjacent subbasins. The offshore extension of the Evrona Fault offsets a fossil reef along the shelf and extends south of the canyon to linear fractures on the deep basin floor.  相似文献   
2.
3.
Variations in the crustal structure along the northern African plate margin have caused different modes of collision with Eurasia. Lateral density variations along the central Mediterranean collision zone are expressed in a change of the angle of the downbending African Plate and lead to the formation of strike-slip transfers in these transition zones that are roughly perpendicular to the trend of the collisional zone. In some cases these transfer zones are developed into hinge faults, while in others they can be developed into transform faults. This process governs the segmentation of the collision zone in the central Mediterranean region south of the Maghrebian thrust belt in Tunisia and Sicily through the Calabrian Arc to the northeastern Hellenic Arc, extending further to the Cyprian Arc and to the Taurus-Zagros chain.  相似文献   
4.
Part II of this paper is a direct continuation of Part I, where we consider the same types of orthorhombic layered media and the same types of pure-mode and converted waves. Like in Part I, the approximations for the slowness-domain kinematical characteristics are obtained by combining power series coefficients in the vicinity of both the normal-incidence ray and an additional wide-angle ray. In Part I, the wide-angle ray was set to be the critical ray (‘critical slowness match’), whereas in Part II we consider a finite long offset associated with a given pre-critical ray (‘pre-critical slowness match’). Unlike the critical slowness match, the approximations in the pre-critical slowness match are valid only within the bounded slowness range; however, the accuracy within the defined range is higher. Moreover, for the pre-critical slowness match, there is no need to distinguish between the high-velocity layer and the other, low-velocity layers. The form of the approximations in both critical and pre-critical slowness matches is the same, where only the wide-angle power series coefficients are different. Comparing the approximated kinematical characteristics with those obtained by exact numerical ray tracing, we demonstrate high accuracy. Furthermore, we show that for all wave types, the accuracy of the pre-critical slowness match is essentially higher than that of the critical slowness match, even for matching slowness values close to the critical slowness. Both approaches can be valuable for implementation, depending on the target offset range and the nature of the subsurface model. The pre-critical slowness match is more accurate for simulating reflection data with conventional offsets. The critical slowness match can be attractive for models with a dominant high-velocity layer, for simulating, for example, refraction events with very long offsets.  相似文献   
5.
Anisotropy in subsurface geological models is primarily caused by two factors: sedimentation in shale/sand layers and fractures. The sedimentation factor is mainly modelled by vertical transverse isotropy (VTI), whereas the fractures are modelled by a horizontal transversely isotropic medium (HTI). In this paper we study hyperbolic and non‐hyperbolic normal reflection moveout for a package of HTI/VTI layers, considering arbitrary azimuthal orientation of the symmetry axis at each HTI layer. We consider a local 1D medium, whose properties change vertically, with flat interfaces between the layers. In this case, the horizontal slowness is preserved; thus, the azimuth of the phase velocity is the same for all layers of the package. In general, however, the azimuth of the ray velocity differs from the azimuth of the phase velocity. The ray azimuth depends on the layer properties and may be different for each layer. In this case, the use of the Dix equation requires projection of the moveout velocity of each layer on the phase plane. We derive an accurate equation for hyperbolic and high‐order terms of the normal moveout, relating the traveltime to the surface offset, or alternatively, to the subsurface reflection angle. We relate the azimuth of the surface offset to its magnitude (or to the reflection angle), considering short and long offsets. We compare the derived approximations with analytical ray tracing.  相似文献   
6.
The results of recent magnetic measurements in the southern part of the Sea of Galilee, Israel and in the land area south of it, indicate the presence in the subsurface of elongated intrusive bodies of basic composition. These bodies are thought to be associated with faults which formed a rhomb shaped graben during movement along the main Jordan Rift Valley shear system and may mark the southern boundary of that graben. If that is the case, the Sea of Galilee may be considerably shorter in the N-S direction than previously thought. The proposed new dimensions of the graben as outlined in this study are more readily explained by the accepted mechanisms for the formation of rhomb shaped grabens.  相似文献   
7.
We use residual moveouts measured along continuous full azimuth reflection angle gathers, in order to obtain effective horizontal transversely isotropic model parameters. The angle gathers are generated through a special angle domain imaging system, for a wide range of reflection angles and full range of phase velocity azimuths. The estimation of the effective model parameters is performed in two stages. First, the background horizontal transversely isotropic (HTI)/vertical transversely isotropic (VTI) layered model is used, along with the values of reflection angles, for converting the measured residual moveouts (or traveltime errors) into azimuthally dependent normal moveout (NMO) velocities. Then we apply a digital Fourier transform to convert the NMO velocities into azimuthal wavenumber domain, in order to obtain the effective HTI model parameters: vertical time, vertical compression velocity, Thomsen parameter delta and the azimuth of the medium axis of symmetry. The method also provides a reliability criterion of the HTI assumption. The criterion shows whether the medium possesses the HTI type of symmetry, or whether the azimuthal dependence of the residual traveltime indicates to a more complex azimuthal anisotropy. The effective model used in this approach is defined for a 1D structure with a set of HTI, VTI and isotropic layers (with at least one HTI layer). We describe and analyse the reduction of a multi‐layer structure into an equivalent effective HTI model. The equivalent model yields the same NMO velocity and the same offset azimuth on the Earth's surface as the original layered structure, for any azimuth of the phase velocity. The effective model approximates the kinematics of an HTI/VTI layered structure using only a few parameters. Under the hyperbolic approximation, the proposed effective model is exact.  相似文献   
8.
Kinematical characteristics of reflected waves in anisotropic elastic media play an important role in the seismic imaging workflow. Considering compressional and converted waves, we derive new, azimuthally dependent, slowness-domain approximations for the kinematical characteristics of reflected waves (radial and transverse offsets, intercept time and traveltime) for layered orthorhombic media with varying azimuth of the vertical symmetry planes. The proposed method can be considered an extension of the well-known ‘generalized moveout approximation’ in the slowness domain, from azimuthally isotropic to azimuthally anisotropic models. For each slowness azimuth, the approximations hold for a wide angle range, combining power series coefficients in the vicinity of both the normal-incidence ray and an additional wide-angle ray. We consider two cases for the wide-angle ray: a ‘critical slowness match’ and a ‘pre-critical slowness match’ studied in Parts I and II of this work, respectively. For the critical slowness match, the approximations are valid within the entire slowness range, up to the critical slowness. For the ‘pre-critical slowness match’, the approximations are valid only within the bounded slowness range; however, the accuracy within the defined range is higher. The critical slowness match is particularly effective when the subsurface model includes a dominant high-velocity layer where, for nearly critical slowness values, the propagation in this layer is almost horizontal. Comparing the approximated kinematical characteristics with those computed by numerical ray tracing, we demonstrate high accuracy.  相似文献   
9.
Salt tectonics in pull-apart basins with application to the Dead Sea Basin   总被引:1,自引:0,他引:1  
The Dead Sea Basin displays a broad range of salt-related structures that developed in a sinistral strike-slip tectonic environment: en échelon salt ridges, large salt diapirs, transverse oblique normal faults, salt walls and rollovers. Laboratory experiments are used to investigate the mechanics of salt tectonics in pull-apart systems. The results show that in an elongated pull-apart basin the basin fill, although decoupled from the underlying basement by a salt layer, remains frictionally coupled to the boundary. The basin fill, therefore, undergoes a strike-slip shear couple that simultaneously generates en échelon fold trains and oblique normal faults, trending mutually perpendicular. According to the orientation of basin boundaries, sedimentary cover deformation can be dominantly contractional or extensional, at the extremities of pull-apart basins forming either folds and thrusts or normal faults, respectively. These guidelines, applied to the analysis of the Dead Sea Basin, show that the various salt-related structures form a coherent set in the frame of a sinistral strike-slip shearing deformation of the sedimentary basin fill.  相似文献   
10.
Seismic reflection and refraction studies in Lake Kinneret, which is located in the northern part of the Dead Sea Rift have been carried out. In the seismic reflection work several instruments including sparker, boomer and air guns were used. The acoustic penetration was limited, giving information on the uppermost sediments only. In the seismic refraction study the energy source was seismic explosives charges placed below the water table in shotholes located onshore at either end of two lines. The seismic signals were picked up by hydrophones and transmitted to the shore-based recording stations by special radio transmitters.

The seismic refraction profiles show different sedimentary structures at various parts of the lake. The layer underlying the top sedimentary sequence is of higher seismic velocity in the northern section than in the southern section. This suggests a difference in the stratigraphic section between the two parts. Unconformities and faults which account for the structures observed here probably exist under the lake.

The shallow reflection data indicate active tectonic processes in this area. Folds and faults have been observed in the uppermost sediments. The most deformed areas are along the margins but some deformation also occurs at the center of the lake in its deepest portion. The area is also seismically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号