首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   0篇
地球科学   97篇
  2019年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   8篇
  2011年   1篇
  2010年   2篇
  2009年   9篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1995年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1981年   2篇
  1980年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1965年   2篇
  1964年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
The Denitrification-Decompostion (DNDC) model was used to estimate the impact of change in management practices on N2O emissions in seven major soil regions in Canada, for the period 1970 to 2029. Conversion of cultivated land to permanent grassland would result in the greatest reduction in N2O emissions, particularly in eastern Canada wherethe model estimated about 60% less N2O emissions for thisconversion. About 33% less N2O emissions were predicted for a changefrom conventional tillage to no-tillage in western Canada, however, a slight increase in N2O emissions was predicted for eastern Canada. GreaterN2O emissions in eastern Canada associated with the adoption of no-tillage were attributed to higher soil moisture causing denitrification, whereas the lower emissions in western Canada were attributed to less decomposition of soil organic matter in no-till versus conventional tilled soil. Elimination of summer fallow in a crop rotation resulted in a 9% decrease in N2O emissions, with substantial emissions occurringduring the wetter fallow years when N had accumulated. Increasing N-fertilizer application rates by 50% increased average emissions by 32%,while a 50% decrease of N-fertilizer application decreased emissions by16%. In general, a small increase in N2O emissions was predicted when N-fertilizer was applied in the fall rather than in the spring. Previous research on CO2 emissions with the CENTURY model (Smith et al.,2001) allowed the quantification of the combined change in N2O andCO2 emissions in CO2 equivalents for a wide range of managementpractices in the seven major soil regions in Canada. The management practices that have the greatest potential to reduce the combined N2O andCO2 emissions are conversion from conventional tillage to permanent grassland, reduced tillage, and reduction of summer fallow. The estimated net greenhouse gas (GHG) emission reduction when changing from cultivated land to permanent grassland ranged from 0.97 (Brown Chernozem) to 4.24 MgCO2 equiv. ha–1 y–1 (BlackChernozem) for the seven soil regions examined. When changing from conventional tillage to no-tillage the net GHG emission reduction ranged from 0.33 (Brown Chernozem) to 0.80 Mg CO2 equiv. ha–1 y–1 (Dark GrayLuvisol). Elimination of fallow in the crop rotation lead to an estimated net GHG emission reduction of 0.43 (Brown Chernozem) to 0.80 Mg CO2 equiv.ha–1 y–1 (Dark Brown Chernozem). The addition of 50% more or 50% less N-fertilizer both resulted in slight increases in combined CO2 and N2O emissions. There was a tradeoff in GHG flux with greaterN2O emissions and a comparable increase in carbon storage when 50% more N-fertilizer was added. The results from this work indicate that conversion of cultivated land to grassland, the conversion from conventional tillage to no-tillage, and the reduction of summerallow in crop rotations could substantially increase C sequestration and decrease net GHG emissions. Based on these results a simple scaling-up scenario to derive the possible impacts on Canada's Kyoto commitment has been calculated.  相似文献   
2.
Two different deterministic and two alternative stochastic (i.e., geostatistical) approaches to modeling the distribution of hydraulic conductivity (K) in a nonuniform (sigma2ln(K)) = 0.29) glacial sand aquifer were used to explore the influence of conceptual model selection on simulations of three-dimensional tracer movement. The deterministic K models employed included a homogeneous effective K and a perfectly stratified 14 layer model. Stochastic K models were constructed using sequential Gaussian simulation and sequential i ndicator simulation conditioned to available K values estimated from measured grain size distributions. Standard simulation software packages MODFLOW, MT3DMS, and MODPATH were used to model three-dimensional ground water flow and transport in a field tracer test, where a pulse of bromide was injected through an array of three fully screened wells and extracted through a single fully screened well approximately 8 m away. Agreement between observed and simulated transport behavior was assessed through direct comparison of breakthrough curves (BTCs) and selected breakthrough metrics at the extraction well and at 26 individual multilevel sample ports distributed irregularly between the injection and extraction wells. Results indicate that conceptual models incorporating formation variability are better able to capture observed breakthrough behavior. Root mean square (RMS) error of the deterministic models bracketed the ensemble mean RMS error of stochastic models for simulated concentration vs. time series, but not for individual BTC characteristic metrics. The spatial variability models evaluated here may be better suited to simulating breakthrough behavior measured in wells screened over large intervals than at arbitrarily distributed observation points within a nonuniform aquifer domain.  相似文献   
3.
The influence of model dimensionality on predictions of mass recovery from dense non-aqueous phase liquid (DNAPL) source zones in nonuniform permeability fields was investigated using a modified version of the modular three-dimensional transport simulator (MT3DMS). Thirty-two initial two- (2D) and three-dimensional (3D) tetrachloroethene–DNAPL source zone architectures, taken from a recent modeling study, were used as initial conditions for this analysis. Commonly employed source zone metrics were analyzed to determine differences between 2D and 3D predictions: (i) down-gradient flux-averaged contaminant concentration, (ii) reductions in contaminant mass flux through a down-gradient boundary, (iii) source zone ganglia-to-pool (GTP) ratio, and (iv) time required to achieve a remediation objective. 3D flux-averaged contaminant concentrations were approximately 3.5 times lower than concentrations simulated in 2D. This difference was attributed to dilution of the contaminant concentrations down gradient of the source zone. Contaminant flux reduction predictions for a given mass recovery were generally 5% higher in 3D simulations than in 2D simulations. The GTP ratio declined over time as mass was recovered in both 2D and 3D simulations. Although the source longevity (i.e., time required to achieve 99.99% mass recovery) differed between individual 2D and 3D realizations, the mean source longevity for the 2D and 3D simulation ensembles was within 2%. 2D simulations tended to over-predict the time required to achieve lower mass recovery levels (e.g. 50% mass recovery) due to a smaller contaminated area exposed to uncontaminated water. These findings suggest that ensemble averages of 2D numerical simulations of DNAPL migration, entrapment, dissolution, and mass recovery in statistically homogenous, nonuniform media may provide reasonable approximations to average behavior obtained using simulations conducted in fully three-dimensional domains.  相似文献   
4.
5.
6.
The development of instrumental analytics such as the LC-MS/MS has made it possible to quickly determine many component concentrations in a single chromatogram. However, the validation of such multi-methods needs new strategies for robustness and optimization. Statistical execution of analytical tests is one tool that can be utilized to meet this requirement. A Central Composite Design (CCD) was utilized for the validation of an LC-MS/MS multi-method for 84 analytes. The experimental design includes six design variables and two non-design variables (response variables). Concentration, ionization temperature, dwell time, gradient, flow (of eluent), and spraying/curtain gas (continuous design variables) were varied on five different levels; the whole design encompassed 91 runs. To investigate the robustness of a LC-MS/MS method both peak sensitivity and chromatographic separation had to be verified. Therefore, two non-design variables were necessary. The distribution of the peaks over analysis time was applied to describe the quality of the chromatographic separation. The sensitivity was described with the signal to noise ratio (S/N). The evaluation of the measured data was accomplished with the Analysis of Variance (ANOVA) and the Response Surface Methodology (RSM). Three main effects (concentration, ionization temperature, dwell time) and no significant interaction effect were found for the response variable “S/N”. The variables of concentration, ionization temperature, and dwell time had no significant effects for the response variable “S/N”. The ANOVA of the response variable chromatographic separation abandoned no significant effects as well. Therefore, robustness of the method can be guaranteed for all non significant design variables.  相似文献   
7.
The rock glacier Innere Ölgrube, located in a small side valley of the Kauner Valley (Ötztal Alps, Austria), consists of two separate, tongue-shaped rock glaciers lying next to each other. Investigations indicate that both rock glaciers contain a core of massive ice. During winter, the temperature at the base of the snow cover (BTS) is significantly lower at the active rock glacier than on permafrost-free ground adjacent to the rock glacier. Discharge is characterized by strong seasonal and diurnal variations, and is strongly controlled by the local weather conditions. Water temperature of the rock glacier springs remains constantly low, mostly below 1°C during the whole melt season. The morphology of the rock glaciers and the presence of meltwater lakes in their rooting zones as well as the high surface flow velocities of >1 m/yr point to a glacial origin. The northern rock glacier, which is bounded by lateral moraines, evolved from the debris-covered tongue of a small glacier of the Little Ice Age with its last highstand around A.D. 1850. Due to the global warming in the following decades, the upper parts of the steep and debris-free ice glacier melted, whereas the debris-covered glacier tongue transformed into an active rock glacier. Due to this evolution and due to the downslope movement, the northern rock glacier, although still active, at present is cut off from its ice and debris supply. The southern rock glacier has developed approximately during the same period from a debris-covered cirque glacier at the foot of the Wannetspitze massif.  相似文献   
8.
Numerical groundwater flow and contaminant transport modeling incorporating three alternative conceptual models was conducted in 2005 to assess remedial actions and predict contaminant concentrations in an unconfined glacial aquifer located in Milford, Michigan, USA. Three alternative conceptual models were constructed and independently calibrated to evaluate uncertainty in the geometry of an aquitard underlying the aquifer and the extent to which infiltration from two manmade surface water bodies influenced the groundwater flow field. Contaminant transport for benzene, cis-DCE, and MTBE was modeled for a 5-year period that included a 2-year history match from July 2003 to May 2005 and predictions for a 3-year period ending in July 2008. A postaudit of model performance indicates that predictions for pumping wells, which integrated the transport signal across multiple model layers, were reliable but unable to differentiate between alternative conceptual model responses. In contrast, predictions for individual monitoring wells with limited screened intervals were less consistent, but held promise for evaluating alternative hydrogeologic models. Results of this study suggest that model conceptualization can have important practical implications for the delineation of contaminant transport pathways using monitoring wells, but may exert less influence on integrated predictions for pumping wells screened over multiple numerical model layers.  相似文献   
9.
We examine the properties of electromagnetic radiation embedded in the metric (+–++) in interaction with ordinary charged particles, where thex-direction is the direction of a superluminal source. The absorption of the corresponding photons and their conversion into ordinary light is considered in lowest-order perturbation theory. Particular emphasis is on the radiation component which spreads with velocities of values around infinity. It is shown that ordinary receivers of electromagnetic radiation do not respond to such light.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号