首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球科学   5篇
  2005年   1篇
  2003年   1篇
  2002年   3篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
通过振动台试验,对群桩基础模型和桩筏基础模型在水平荷载作用下的动力反应进行了研究。试验内容包括对单独的地基模型;在地基模型中安装群桩基础模型;在地基模型中安装桩筏基础模型的3种振动试验和砂土的三轴试验。结果显示,如果能选择合理的相似性准则,可以利用振动台试验对桩基础在振动荷载下的动力行为进行分析。  相似文献   
2.
桩筏基础变形分析简化程序PRAB采用了以下混合模型。柔性筏、桩和土体分别被模型化为薄板、弹性梁和弹簧。将其扩充到能够考虑土体有限深度的影响。对设置在有限深度的均质土体中的桩筏基础和群桩基础的变形,采用PRAB和三维有限元法分别进行了分析,两种计算方法的结果非常吻合。结果表明,与群桩相比,桩筏基础中桩体所受的力和变形都相对较小。因而仅讨论了采用线弹性模型的情况,非线性模型也可以扩充到PRAB程序中去。  相似文献   
3.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to ground movements induced by tunnelling and incorporated into a computer program ‘PRAB’. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates, the piles as elastic beams, and the soil is treated as interactive springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are modelled based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with some published solutions for single piles and pile groups subjected to ground movements induced by tunnelling. Thereafter, the solutions from this approach for the analysis of a pile group and a piled raft subjected to ground movements induced by tunnelling are compared with those from three‐dimensional finite difference program. Good agreements between these solutions are demonstrated. The method is then used for a parametric study of single piles, pile groups and piled rafts subjected to ground movements induced by tunnelling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
4.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
5.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to vertical, lateral, and moment loads, using a hybrid model in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. Both the vertical and lateral resistances of the piles as well as the raft base are incorporated into the model. Pile–soil–pile, pile–soil–raft and raft–soil–raft interactions are taken into account based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with several existing methods for single piles, pile groups and piled rafts. Workable design charts are given for the estimation of the lateral displacement and the load distribution of piled rafts from the stiffnesses of the raft alone and the pile group alone. Additionally, parametric studies were carried out concerning batter pile foundations. It was found that the use of batter piles can efficiently improve the deformation characteristics of pile foundations subjected to lateral loads. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号