首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   7篇
地球科学   143篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   11篇
  2015年   11篇
  2014年   5篇
  2013年   10篇
  2012年   3篇
  2011年   9篇
  2010年   9篇
  2009年   8篇
  2008年   9篇
  2007年   4篇
  2006年   9篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1984年   1篇
  1979年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
1.
Oxygen and total dissolved inorganic carbon (DIC) fluxes at the water–sediment interface were measured using benthic chambers to assess the short-term variations of community respiration (CR) in the back reef sediments of Reunion Island (Indian Ocean). Benthic CR had a daily cycle of minimal (6:00 AM) and maximal values (6:00 PM), showing increases of oxygen and DIC fluxes of 2.8- and 3.8-fold, respectively. Average CR values were observed at midday and midnight. The evolution of fluxes was positively related to oxygen concentration in ambient water, but not to temperature changes. In the study area, high daytime primary production augments the amount of energy available for community metabolism and increases benthic respiration. The benthic communities are therefore subjected to short-term variable environmental conditions with oxygen supersaturation during the day, and moderately hypoxic conditions at the end of the night.  相似文献   
2.
Two ten-members ensemble experiments using a coupled ocean-atmosphere general circulation model are performed to study the dynamical response to a strong westerly wind event (WWE) when the tropical Pacific has initial conditions favourable to the development of a warm event. In the reference ensemble (CREF), no wind perturbation is introduced, whereas a strong westerly wind event anomaly is introduced in boreal winter over the western Pacific in the perturbed ensemble (CWWE). Our results demonstrate that an intense WWE is capable of establishing the conditions under which a strong El Niño event can occur. First, it generates a strong downwelling Kelvin wave that generates a positive sea surface temperature (SST) anomaly in the central-eastern Pacific amplified through a coupled ocean-atmosphere interaction. This anomaly can be as large as 2.5°C 60 days after the WWE. Secondly, this WWE also initiates an eastward displacement of the warm-pool that promotes the occurrence of subsequent WWEs in the following months. These events reinforce the initial warming through the generation of additional Kelvin waves and generate intense surface jets at the eastern edge of the warm-pool that act to further shift warm waters eastward. The use of a ten-members ensemble however reveals substantial differences in the coupled response to a WWE. Whereas four members of CWWE ensemble develop into intense El Niño warming as described above, four others display a moderate warming and two remains in neutral conditions. This diversity between the members appears to be due to the internal atmospheric variability during and following the inserted WWE. In the four moderate warm cases, the warm-pool is initially shifted eastward following the inserted WWE, but the subsequent weak WWE activity (when compared to the strong warming cases) prevents to further shift the warm-pool eastwards. The seasonal strengthening of trade winds in June–July can therefore act to shift warm waters back into the western Pacific, reducing the central-eastern Pacific warming. This strong sensitivity of the coupled response to WWEs may therefore limit the predictability of El Niño events, as the high frequency wind variability over the warm pool region remains largely unpredictable even at short time lead.  相似文献   
3.
Crétat  Julien  Braconnot  Pascale  Terray  Pascal  Marti  Olivier  Falasca  Fabrizio 《Climate Dynamics》2020,55(9-10):2761-2784

The low-frequency evolution of Indian rainfall mean-state and associated interannual-to-decadal variability is discussed for the last 6000 years from a multi-configuration ensemble of fully coupled global transient simulations. This period is marked by a shift of Indian Summer Monsoon Rainfall (ISMR) distribution towards drier conditions, including extremes, and a contraction of the rainy season. The drying is larger in simulations with higher horizontal resolution of the atmosphere and revised land surface hydrology. Vegetation–climate interactions and the way runoff is routed to ocean modulate the timing of the monsoon onset but have negligible effects on the evolution of seasonal rainfall amounts in our modeling framework in which carbon cycling is always active. This drying trend is accompanied by changes in ISMR interannual-to-decadal variability decreasing over north and south India but increasing over central India (20°–25° N). The ISMR interannual-to-decadal variability is decomposed into six physically consistent regimes using a clustering technique to further characterize its changes and associated teleconnections. From 6 to 3.8 kyr bp, the century-to-century modulations in the frequency of occurrence associated to the regimes are asynchronous between the simulations. Orbitally-driven trends can only be detected for two regimes over the whole 6–0 kyr bp period. These two regimes reflect increased influence of ENSO on both ISMR and Indian Ocean Dipole as the inter-hemispheric energy gradient weakens. Severe long-term droughts are also shown to be a combination of long-term drying and internally generated low-frequency modulations of the interannual-to-decadal variability.

  相似文献   
4.
Madagascar has one of the highest poverty rates in the world and consequently the long-term monitoring of groundwater resources is not a priority for the authorities. However, groundwater is often the only sustainable resource that has a satisfactory quality to supply the population. This is especially true in the south-west of the country, which is a semi-arid region and a global change hot spot (intense land use and climate changes). In response to the lack of data, the Groundwater Resource Observatory for Southwestern Madagascar (GROSoM) was established to monitor piezometry and meteorology over the longer term as part of a humanitarian response. The first site was setup in 2014 in a catchment located over a carbonate plateau; in 2018, a second site was installed in an alluvial setting within a crystalline basement catchment and a third site will be installed in 2020 to monitor groundwater dynamics in a coastal setting. The three sites, located between Toliara and Taolagnaro cities, are complementary and representative of various hydrogeological systems in Southwestern Madagascar. Each site includes a weather station and between 3 and 6 piezometric probes. The monitoring data indicate a strong inter-annual variability in precipitation, which induces a strong variability in aquifers recharge. One of the driest years in 2016 seems to be consistent with strong El Niño – Southern Oscillation (ENSO) effects observed at the global scale, while years with higher recharge appear to be related to cyclones such as Fundi in 2015 and Eketsang in 2019. Preliminary results of cross-disciplinary studies demonstrated a link between groundwater and health issues (i.e., admissions to basic health centres). This observatory aims to produce long-term data and has two objectives: (i) strengthening the early warning system for humanitarian crises in Madagascar; (ii) contributing to a better understanding of the effects of climate change on groundwater resources in this semi-arid region.  相似文献   
5.
Recent studies have shown the capabilities of Global Positioning System (GPS) carrier phases for frequency transfer based on the observations from geodetic GPS receivers driven by stable atomic clocks. This kind of receiver configuration is the kind primarily used within the framework of the International GPS Service (IGS). The International GPS Service/Bureau International des Poids et Mesures (IGS/BIPM) pilot project aims at taking advantage of these GPS receivers to enlarge the network of Time Laboratories contributing to the realization of the International Atomic Time (TAI). In this article, we outline the theory necessary to describe the abilities and limitations of time and frequency transfer using the GPS code and carrier phase observations. We report on several onsite tests and evaluate the present setup of our 12-channel IGS receiver (BRUS), which uses a hydrogen maser as an external frequency reference, to contribute to the IGS/BIPM pilot project. In the initial experimental setup, the receivers had a common external frequency reference; in the second setup, separate external frequency references were used. Independent external clock monitoring provided the necessary information to validate the results. Using two receivers with a common frequency reference and connected to the same antenna, a zero baseline, we were able to use the carrier phase data to derive a frequency stability of 6 × 10−16 for averaging times of one day. The main limitation in the technique originates from small ambient temperature variations of a few degrees Celsius. While these temperature variations have no effect on the functioning of the GPS receiver within the IGS network, they reduce the capacities of the frequency transfer results based on the carrier phase data. We demonstrate that the synchronization offset at the initial measurement epoch can be estimated from a combined use of the code and carrier phase observations. In our test, the discontinuity between two consecutive days was about 140 ps. ? 1999 John Wiley & Sons, Inc.  相似文献   
6.
The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model.  相似文献   
7.
In Geropotamos River Basin, located on the north-central part of Crete, Greece, two main factors were believed to be affecting the geochemistry of the groundwater with high salt contents: seawater intrusion and/or Miocene evaporates. To identify the origin of the high salinity in groundwater, a hydrogeochemical and isotopic study was performed. Water samples from 22 wells and 2 springs were analyzed for physico-chemical parameters, major ions analysis, as well as stable isotopes (??18O, ??D). From the present survey, in which detailed hydrogeochemical investigation was conducted, the uncertainty of the contamination sources was decreased in the northern part of Geropotamos Basin. The results complement the scenario in which seawater and the widespread human activities are the principal sources of groundwater contamination. Moreover, the results of the stable isotopes analyses (??18O and ??D) support the same hypothesis and make seawater intrusion the most probable cause for the highest salinity waters. It is indicated that saline intrusion is likely to occur along fractures in a fault zone through otherwise low-permeability phyllite?Cquartzite bedrock, which demonstrates the critical role of fracture pathways in salination problems of coastal aquifers.  相似文献   
8.
We demonstrate the effectiveness of the Exoplanet Characterisation Observatory mission concept for constraining the atmospheric properties of hot and warm gas giants and super Earths. Synthetic primary and secondary transit spectra for a range of planets are passed through EChOSim [13] to obtain the expected level of noise for different observational scenarios; these are then used as inputs for the NEMESIS atmospheric retrieval code and the retrieved atmospheric properties (temperature structure, composition and cloud properties) compared with the known input values, following the method of [1]. To correctly retrieve the temperature structure and composition of the atmosphere to within 2 σ, we find that we require: a single transit or eclipse of a hot Jupiter orbiting a sun-like (G2) star at 35 pc to constrain the terminator and dayside atmospheres; 20 transits or eclipses of a warm Jupiter orbiting a similar star; 10 transits/eclipses of a hot Neptune orbiting an M dwarf at 6 pc; and 30 transits or eclipses of a GJ1214b-like planet.  相似文献   
9.
EChOSim is the end-to-end time-domain simulator of the Exoplanet Characterisation Observatory (EChO) space mission. EChOSim has been developed to assess the capability of the EChO mission concept to detect and characterise the atmospheres of transiting exoplanets. Here we discuss the details of the EChOSim implementation and describe the models used to represent the instrument and to simulate the detection. Software simulators have assumed a central role in the design of new instrumentation and in assessing the level of systematics affecting the measurements of existing experiments. Thanks to its high modularity, EChOSim can simulate basic aspects of several existing and proposed spectrometers including instruments on the Hubble Space Telescope and Spitzer, ground-based and balloon-borne experiments. A discussion of different uses of EChOSim is given, including examples of simulations performed to assess the EChO mission.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号