首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   4篇
地球科学   264篇
  2025年   2篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   11篇
  2020年   11篇
  2019年   14篇
  2018年   17篇
  2017年   20篇
  2016年   27篇
  2015年   11篇
  2014年   19篇
  2013年   28篇
  2012年   14篇
  2011年   20篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有264条查询结果,搜索用时 17 毫秒
1.
    
Podiform chromite ore deposits in ultramafic parts of ophiolite rock complexes can be detected using remote sensing data. This study focuses on the discrimination of chromite bearing mineralized zones using Landsat TM and Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data in Abdasht ophiolite complex, south of Iran. Several image processing methods, including Log residual, Decorellation Stretch, Band ratio and Mixture-Tuned Matched-Filtering (MTMF) have been evaluated for lithological mapping using Landsat ETM and ASTER data. The outcome showed that TIR band ratios of ASTER can discriminate quartzite, carbonate and mafic–ultramafic rocks in the ophiolite complex. Log residual, Decorollation Stretch and MTMF methods were more capable than previous published ASTER methods specifically for lithological mapping at a regional scale. New geological map of Abdasht region was produced based on the interpretation of ASTER image processing results and field verification. Consequently, the proposed methods demonstrated the ability of ASTER and Landsat ETM data to provide information for detecting chromite host rock (serpentinized dunites) that is valuable for chromite prospecting in study area. Additionally, the techniques used in this study are subtle for exploration geologist and mine engineering to identify high-potential chromite-bearing zones in the ophiolite complex, minimizing costly and time-consuming field works.  相似文献   
2.
The presence of a gassy ground condition is an important problem in tunneling. In this study, the effects of groundwater H2S and CH4 emissions are investigated and characterized together with the factors that created these conditions in Nosoud tunnel in Iran. Through the geological investigations, the presence of these gasses was not detected prior to the construction of the tunnel. Groundwater sampling indicated that about 1 L of H2S is released per 100 L of the water inflow into the Nosoud tunnel under normal conditions. However, the volume of the released gas was varying with the changes in the groundwater discharge rate. Thus, estimation of groundwater inflow into the tunnel is necessary for predicting the volume of gas emission. Based on the experience of the Nosoud tunnel excavations, there are several geological and hydrogeological factors that must be considered as the indicators of gas emissions during tunneling. Considering the importance of ground water gas emission into the tunnels located in gassy conditions, the present work was conducted to predict the H2S seepage before the excavation using geological and hydrogeological indicators.  相似文献   
3.
We present self-similar solutions for advection-dominated accretion flows with thermal conduction in the presence of outflows. Possible effects of outflows on the accretion flow are parametrized and a saturated form of thermal conduction, as is appropriate for the weakly-collisional regime of interest, is included in our model. While the cooling effect of outflows is noticeable, thermal conduction provides an extra heating source. In comparison to accretion flows without winds, we show that the disc rotates faster and becomes cooler because of the angular momentum and energy flux which are taking away by the winds. But thermal conduction opposes the effects of winds and not only decreases the rotational velocity, but increases the temperature. However, reduction of the surface density and the enhanced accretion velocity are amplified by both of the winds and the thermal conduction. We find that for stronger outflows, a higher level of saturated thermal conduction is needed to significantly modify the physical profiles of the accretion flow.  相似文献   
4.
    
There are various faults in northern and southern margins of Torbat-e-Jam-Fariman plain which show the probability of enormous earthquake in the future. In present study the geomorphic indices contain Asymmetry Function(Af), Sinuosity of mountain front(Smf), Valley floor index(Vf), Hypsometric index(Hi), Mean Axial slope of channel index(MASC) and Drainage Basin Shape(Bs), have been utilized to determine the relative tectonic activity index(IAT) to recognize, eventually, the geo-structural model...  相似文献   
5.
The purpose of this study is to analyze the dynamical role of a radiation field on the growth rate of the unstable Kelvin-Helmholtz (KH) perturbations. As a first step toward this purpose, the analyze is done in a general way, irrespective of applying the model to a specific astronomical system. The transition zone between the two layers of the fluid is ignored. Then, we perform a linear analysis and by imposing suitable boundary conditions and considering a radiation field, we obtain appropriate dispersion relation. Unstable modes are studied by solving the dispersion equation numerically, and then growth rates of them are obtained. By analyzing our dispersion relation, we show that for a wide range of the input parameters, the radiation field has a destabilizing effect on KH instability. In eruptions of the galaxies or supermassive stars, the radiation field is dynamically important and because of the enhanced KH growth rates in the presence of the radiation; these eruptions can inject more momentum and energy into their environment and excite more turbulent motions.  相似文献   
6.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   
7.
    
In underground environments, survey elements such as survey points and observations provide the information required to define legal boundaries. These elements are also used to connect underground legal spaces to a geodetic survey network. Due to the issues of current 2D approaches for managing underground cadastral data, prominent 3D data models have been extended to support underground land administration. However, previous studies mostly focused on defining underground legal spaces and boundaries, with less emphasis on survey elements. This research aims to extend CityGML to support underground cadastral survey data. The proposed extension is based on the survey elements elicited from underground cadastral plans, which is then implemented for an underground case study area in Melbourne, Australia. This extension integrates underground survey data with legal and physical data in a 3D digital environment and provides an improved representation of survey elements, facilitating the management and communication of underground cadastral survey data.  相似文献   
8.
    
How to select a limited number of strong ground motion records (SGMRs) is an important challenge for the seismic collapse capacity assessment of structures. The collapse capacity is considered as the ground motion intensity measure corresponding to the drift‐related dynamic instability in the structural system. The goal of this paper is to select, from a general set of SGMRs, a small number of subsets such that each can be used for the reliable prediction of the mean collapse capacity of a particular group of structures, i.e. of single degree‐of‐freedom systems with a typical behaviour range. In order to achieve this goal, multivariate statistical analysis is first applied, to determine what degree of similarity exists between each selected small subset and the general set of SGMRs. Principal Component analysis is applied to identify the best way to group structures, resulting in a minimum number of SGMRs in a proposed subset. The structures were classified into six groups, and for each group a subset of eight SGMRs has been proposed. The methodology has been validated by analysing a first‐mode‐dominated three‐storey‐reinforced concrete structure by means of the proposed subsets, as well as the general set of SGMRs. The results of this analysis show that the mean seismic collapse capacity can be predicted by the proposed subsets with less dispersion than by the recently developed improved approach, which is based on scaling the response spectra of the records to match the conditional mean spectrum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
9.
This study aimed to identify indicator species and explore the most important environmental and management variables contributing to vegetation distribution in a hilly upper dam landscape in Zagros Mountain chain, Iran. A stratified random sampling method was used to collect topographic, edaphic, management and vegetation data. The density and cover percentage of perennial species were measured quantitatively. Indicator species were identified using the two-way indicator species analysis. Besides calculating physiognomic factors in sample sites, 24 soil samples were collected from 0 to 30 cm of soil depth and analyzed in terms of gravel percentage, texture, saturation moisture, organic matter, pH and electrical conductivity in saturation extract, lime percentage, soluble calcium and magnesium, available phosphorus, Cation Exchange Capacity(CEC) and soluble sodium and potassium. Multivariate techniques including Canonical Correspondence Analysis and Multi-Dimensional Scaling were used to explore the relationships of species with environmental and management variables. Seven plants were identified as indicator species due to being significantly correlated with management(grazing or non-grazing) and edaphic variables such as CEC, soil texture, pH, CaCO_3 percentage and physiographic variable including slope, elevation, and convex and concave formations(p 0.05). Overall, overgrazing and its subsequent effects on soil characteristics, loss of vegetation cover and trampling were found as the major causes of deterioration. Sustainable and integrated management practices such as the implementation of appropriate grazing systems were suggested to enhance soil quality and reduce the accelerated erosion in upper dam zones.  相似文献   
10.
    
In the framework of the Dead Sea Integrated Research project (DESIRE), 59 seismological stations were deployed in the region of the Dead Sea Basin. Twenty of these stations recorded data of sufficiently high quality between May and September 2007 to be used for ambient seismic noise analysis. Empirical Green’s functions are extracted from cross-correlations of long term recordings. These functions are dominated by Rayleigh waves, whose group velocities can be measured in the frequency range from 0.1 to 0.5 Hz. Analysis of positive and negative correlation lags of the Green’s functions makes it possible to identify the direction of the source of the incoming energy. Signals with frequencies higher than 0.2 Hz originate from the Mediterranean Sea, while low frequencies arrive from the direction of the Red Sea. Travel times of the extracted Rayleigh waves were measured between station pairs for different frequencies, and tomographically inverted to provide independent velocity models. Four such 2D models were computed for a set of frequencies, all corresponding to different sampling depths, and thus together giving an indication of the velocity variations in 3D extending to a depth of 10 km. The results show low velocities in the Dead Sea Basin, consistent with previous studies suggesting up to 8 km of recent sedimentary infill in the Basin. The complex structure of the western margin of the Basin is also observed, with sedimentary infill present to depths not exceeding 5 km west of the southern part of the Dead Sea. The high velocities associated with the Lisan salt diapir are also observed down to a depth of ~5 km. The reliability of the results is confirmed by checkerboard recovery tests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号