首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1154篇
  免费   42篇
  国内免费   5篇
地球科学   1201篇
  2021年   12篇
  2020年   11篇
  2019年   10篇
  2018年   17篇
  2017年   19篇
  2016年   13篇
  2015年   16篇
  2014年   26篇
  2013年   73篇
  2012年   29篇
  2011年   39篇
  2010年   43篇
  2009年   46篇
  2008年   47篇
  2007年   52篇
  2006年   49篇
  2005年   63篇
  2004年   57篇
  2003年   39篇
  2002年   31篇
  2001年   25篇
  2000年   36篇
  1999年   36篇
  1998年   32篇
  1997年   23篇
  1996年   18篇
  1995年   24篇
  1994年   24篇
  1993年   18篇
  1992年   17篇
  1991年   15篇
  1990年   17篇
  1989年   11篇
  1988年   9篇
  1987年   15篇
  1986年   11篇
  1985年   17篇
  1984年   17篇
  1983年   15篇
  1982年   15篇
  1981年   16篇
  1980年   10篇
  1979年   10篇
  1978年   9篇
  1977年   8篇
  1976年   8篇
  1975年   10篇
  1974年   7篇
  1973年   8篇
  1972年   7篇
排序方式: 共有1201条查询结果,搜索用时 0 毫秒
1.
An updated Lagrangian finite-element formulation has been developed for time-dependent problems of soil consolidation involving finite deformations. Large plastic strains as well as rotations occur in such problems and nominal stress measures are introduced in the formulation to redefine stresses. This leads to corrective terms for equilibrium and yield violations in addition to geometric stiffening terms in the governing integral equations. The soil is considered to be either a linear elastic or an elastoplastic, critical-state material. Some simple numerical examples are studied to validate the formulation, followed by a detailed analysis of the problem of penetration of a pile into soil. The results of this problem are viewed with emphasis on the physical interpretation and practical significance.  相似文献   
2.
We report on the analysis of a ∼60-ks XMM–Newton observation of the bright, narrow emission line quasar PG1211+143. Absorption lines are seen in both European Photon Imaging Camera and Reflection Grating Spectrometer spectra corresponding to H- and He-like ions of Fe, S, Mg, Ne, O, N and C. The observed line energies indicate an ionized outflow velocity of ∼24 000 km s−1. The highest energy lines require a column density of   N H∼ 5 × 1023 cm−2  , at an ionization parameter of  log ξ∼ 3.4  . If the origin of this high-velocity outflow lies in matter being driven from the inner disc, then the flow is likely to be optically thick within a radius of ∼130 Schwarzschild radii, providing a natural explanation for the big blue bump (and strong soft X-ray) emission in PG1211+143.  相似文献   
3.
4.
5.
The Very Large Array (VLA) and the frequency agile interferometer at the Owens Valley Radio Observatory (OVRO) were used to observe the M8.1 flare of 23 June, 1988. The VLA obtained images prior to and during the flare at 333 MHz, and at 1.5 and 4.7 GHz. The frequency agile interferometer at Owens Valley obtained interferometer amplitude and total power spectra of the flare at 45 frequencies between 1 and 18 GHz. The observations were supplemented by radiometer measurements made by the USAF RSTN network site at Palehua, HI, by GOES soft X-ray observations, by USAF SOON H filtergrams, and by a KPNO photospheric magnetogram.The radio data reveal a wide variety of phenomena, including: (i) a multiply impulsive microwave burst that is essentially thermal in character; (ii) stationary discrete components at 1.5 GHz, associated temporally and spatially with distant brightenings in Ha; (iii) a dynamical component at 1.5 GHz associated with hot plasma moving subsonically into the corona; (iv) the appearance of intense, short-lived, decimetric burst activity near the lead sunspot in the active region at 1.5 GHz, indicative of a high degree of inhomogeneity in the source.The unusually complete radio coverage allows us to investigate the transport of energy from the initial site to sites of distant H brightenings. The transport of energy appears to be most consistent with slow, thermal processes, rather than rapid transport by nonthermal electron beams.  相似文献   
6.
The Variscan orogenic belt, of which the Bohemian Massif is a part, is typically recognized for its characteristic low pressure, high temperature metamorphism and a large volume of granites. However, there are also bodies of high pressure rocks (eclogites, garnet peridotites and high pressure granulites) which are small in size but widely distributed throughtout the Massif. Initially the high pressure rocks were considered to be relicts of a much older orogenic event, but the increasing data derived from isotopic and geochronological investigations show that many of these rocks have Palaeozoic protoliths. Metamorphic ages from the high pressure rocks define no single event. Instead, a number of discrete clusters of ages are found between about 430 Ma and the time of the dominant low pressure event at around 320–330 Ma.Most of the eclogite and granulite facies rocks are assigned to allochthonous nappes that arrived close to the end of the low pressure event, but before final granite intrusion. The nappes contain a mixture of different units and the relationship between rocks with high pressure relicts and host gneisses with no apparent signs of deep burial is still problematic. Some of the high pressure rocks retain evidence of multiple stages of partial re-equilibration during uplift. Moreover, it can be shown in certain instances that host gneisses also endured a multistage metamorphic development but with a peak event convergent with one of the breakdown stages in the enclosed rocks with high pressure relicts. It thus appears that the nappe units are composite bodies probably formed during episodic intracrustal thrusting. Fluids derived from prograde dehydration reactions in the newly under thrusting slab are taken to be the catalysts that drove the partial re-equilibrations.On the scale of the whole Massif it can be seen within the units with high pressure relicts that the temperature at the peak recorded pressure and that during the breakdown are variable in different locations. It is interpreted that regional metamorphic gradients are preserved for given stages in the history and thus the present day dismembered nappe relicts are not too far removed from their original spatial distribution in an original coherent unit. From the temperature information alone it is highly probable that the refrigerating underthrusting slab was situated in the north-west. However, this north-west to south-east underthrusting probably represents the major 380–370 Ma event and is no guide to the final thrusting that emplaced the much thinned nappe pile with high pressure relicts.Granite genesis is attributed to the late stage stacking, during the final Himalayan-type collision stage, of thinned crust covered by young, water-rich, sediments — erosion products of the earlier orogenic stages. Regional metamorphism at shallow depths above the voluminous granites was followed by final nappe emplacement which rejuvenated the granite ascent in places. Correspondence to: P. J. O'Brien  相似文献   
7.
From the gyroresonance brightness temperature spectrum of a sunspot, one can determine the magnetic field strength by using the property that microwave brightness is limited above a frequency given by an integer-multiple of the gyrofrequency. In this paper, we use this idea to find the radial distribution of magnetic field at the coronal base of a sunspot in the active region, NOAA 4741. The gyroresonance brightness temperature spectra of this sunspot are obtained from multi-frequency interferometric observations made at the Owens Valley Radio Observatory at 24 frequencies in the range of 4.0–12.4 GHz with spatial resolution 2.2″–6.8″. The main results of present study are summarized as follows: first, by comparison of the coronal magnetic flux deduced from our microwave observation with the photospheric magnetic flux measured by KPNO magnetograms, we show that theo-mode emission must arise predominantly from the second harmonic of the gyrofrequency, while thex-mode arises from the third harmonic. Second, the radial distribution of magnetic fieldsB(r) at the coronal base of this spot (say, 2000–4000 km above the photosphere) can be adequately fitted by $$B(r) = 1420(1 \pm 0.080)\exp \left[ { - \left( {\frac{r}{{11.05''(1 \pm 0.014)}}} \right)^2 } \right]G,$$ wherer is the radial distance from the spot center at coronal base. Third, it is found that coronal magnetic fields originate mostly from the photospheric umbral region. Fourth, although the derived vertical variation of magnetic fields can be approximated roughly by a dipole model with dipole moment 1.6 × 1030 erg G?1 buried at 11000 km below the photosphere, the radial field distribution at coronal heights is found to be more confined than predicted by the dipole model.  相似文献   
8.
Characterizing heterogeneous permeable media using flow and transport data typically requires solution of an inverse problem. Such inverse problems are intensive computationally and may involve iterative procedures requiring many forward simulations of the flow and transport problem. Previous attempts have been limited mostly to flow data such as pressure transient (interference) tests using multiple observation wells. This paper discusses an approach to generating stochastic permeability fields conditioned to geologic data in the form of a vertical variogram derived from cores and logs as well as fluid flow and transport data, such as tracer concentration history, by sequential application of simulated annealing (SA). Thus, the method incorporates elements of geostatistics within the framework of inverse modeling. For tracer-transport calculations, we have used a semianalytic transit-time algorithm which is fast, accurate, and free of numerical dispersion. For steady velocity fields, we introduce a transit-time function which demonstrates the relative importance of data from different sources. The approach is illustrated by application to a set of spatial permeability measurements and tracer data from an experiment in the Antolini Sandstone, an eolian outcrop from northern Arizona. The results clearly reveal the importance of tracer data in reproducing the correlated features (channels) of the permeability field and the scale effects of heterogeneity.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号