首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   20篇
  国内免费   1篇
地球科学   995篇
  2020年   7篇
  2019年   10篇
  2018年   21篇
  2017年   16篇
  2016年   24篇
  2015年   12篇
  2014年   23篇
  2013年   46篇
  2012年   35篇
  2011年   37篇
  2010年   44篇
  2009年   57篇
  2008年   50篇
  2007年   39篇
  2006年   42篇
  2005年   52篇
  2004年   42篇
  2003年   50篇
  2002年   26篇
  2001年   22篇
  2000年   22篇
  1999年   12篇
  1998年   17篇
  1997年   16篇
  1996年   21篇
  1995年   8篇
  1994年   5篇
  1993年   12篇
  1992年   11篇
  1991年   13篇
  1990年   8篇
  1989年   12篇
  1988年   9篇
  1987年   12篇
  1986年   10篇
  1985年   15篇
  1984年   15篇
  1983年   8篇
  1982年   8篇
  1981年   10篇
  1980年   12篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   7篇
  1973年   4篇
  1970年   5篇
  1969年   5篇
排序方式: 共有995条查询结果,搜索用时 15 毫秒
1.
The evaluation of ocean simulations against observed datasets is essential to assess their realism and to guide model development, but often remains qualitative, and ignores certain datasets. This paper presents a three-dimensional, quantitative comparison of a 1/6° Atlantic numerical simulation (CLIPPER) with the WOCE current meter dataset in terms of mean velocity and eddy kinetic energy. Our metrics reveal the good behaviour of CLIPPER open boundary conditions and forcing with respect to full-depth current records. Due to its still moderate resolution, however, the model globally underestimates the observed mean speeds and eddy activity. This discrepancy is barely noticeable at low latitudes but increases toward the poles, probably since the poleward decrease of the Rossby radius exceeds that of the horizontal grid step. At least in this eddy-admitting regime, it is suggested that the numerics of geopotential-coordinate models like ours dissipate mean and eddy momentum at depth and adversely affect current–topography interactions.  相似文献   
2.
The following points are discussed:
(i)  The dependence of the angular velocity, , on the spatial coordinates near the lower boundary, R c, of the solar convection zone (SCZ) can be obtained from an integration with respect to r of a sound approximation to the azimuthal equation of motion. Here P 2 (cos ) is the second-order Legendre polynomial and is the polar angle. Estimates of 0, 2 (the primes denote derivatives with respect to r), based on the best available values for the Reynolds stresses and anisotropic viscosity coefficients, suggest that 0 < 0,=">2 0 for r = R c. Since a reliable theory of anisotropic turbulent coefficients does not exist at present, positive values of 0 are conceivable.
(ii)  In the lower SCZ the latitudinal variations of the superadiabatic gradient vanish if is constant along cylinders. The uniformity of the superadiabatic gradient is, however, inconsequential: the physically meaningful rotation law is the one that insures the uniformity of the convective flux.
(iii)  With the exception of the polar regions, the angular momentum transport in thin azimuthal convective rolls is towards the equator.
(iv)  It is suggested that buoyancy uncorrelates horizontally separated regions in the lower SCZ preventing the generation of magnetic fields with small wave numbers: in consequence, the cycle magnetic field must be generated in a region of weak buoyancy whereas the lower SCZ generates a weak rather stochastic magnetic field. The dependence on rotation of these two types of magnetic field could differ.
(v)  In the context of helioseismology it is customary to expand the perturbations (induced by rotation) of the eigenfrequencies in the following form: , where the notation is standard. The observations reveal that to a good approximation a 1 is independent of l. It is shown that this is the case if is constant with r. For a simple viscous, rotating fluid in the steady state (r) is constant with r if the angular momentum loss vanishes. Let J(ri dr) be the angular momentum of a thin shell of radius r and thickness dr. Since , the constancy of (r) implies that each shell of radius r has the same angular momentum as if the Sun were rotating uniformly with an angular velocity given by . It is discussed whether, alternatively, the observations simply indicate that 0(r) is a slowly varying function of r.
Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   
3.
The unexpectedly large scale height of Io's ionosphere (Kliore, A., et al., 1975, Icarus24, 407–410) together with the relatively large molecular weight of the likely principal constituent, SO2 (Pearl, J., et al., 1979, Nature280, 755–758), suggest a high ionospheric temperature. Electrical induction in Io's ionosphere due to the corotating plasma bound to the Jovian magnetosphere is one possible source for attainment of such high temperatures. Accordingly, unipolar induction models were constructed to calculate ionospheric joule heating numerically. Heating rates produced by highly simplified models lie in the range 10?9 to 10?8 W/m3. These heating rates are lower than those determined from uv photodissociative heating models (Kumar, S., 1980, Geophys. Res. Lett.7, 9–12) at low levels in the ionosphere but are comparable in the upper ionosphere. The low electrical heating rate throughout most of the ionosphere is due to the power limitation imposed by the Alfvén wings which complete the electrical circuit (Neubauer, F.M., 1980, J. Geophys. Res.85, 1171–1178). Contrary to the pre-Voyager calculations of Cloutier, P. A., et al. (1978, Astrophys. Space Sci.55, 93–112), our numerical results show that the J × B force density due to unipolar induction currents in the ionosphere is much less than the gravitational force density when the combined mass of the neutral species is included. The binding and coupling of the ionosphere is principally due to the relatively dense (possibly localized) neutral SO2 atmosphere. In regions where the ions and neutrals are collisionally coupled the ionosphere will not be stripped off by the J × B forces. However at a level above that (to which the ions move by diffusion only) the charged species would be removed. Thus there appears to be no need to postulate the existence of an intrinsic Ionian magnetic field as suggested by Kivelson, M. G., et al. (79, Science 205, 491–493) and Southwood, S. J., et al. (1980, J. Geophys. Res., in press) in order to retain the observed ionosphere.  相似文献   
4.
The discovery of crude oils and condensates at ever higher temperatures casts doubt on the validity of the usual geochemical modelling approach, that uses empirical reactions and rate constants. The solution used to account for such a high thermal stability is presently to adjust the rate parameters, but the physical meaning and scientific value of such a strategy can be questioned. We have developed a mechanistic model consisting of 5200 lumped free radical reactions to describe the thermal evolution of a mixture of 52 organic species meant to represent light petroleum. Rate constants used are those available in the literature or estimated using well established thermochemistry-reactivity correlations. Chemical structures included in the model are linear, branched and cyclic hydrocarbons, hydro- and alkyl-aromatics, PAHs, and three heteroatomic compounds. Reactions include cracking and alkylation chains and inhibiting and accelerating reactions from the various reactants. This model has been applied to several mixtures with various proportions of reaction inhibitors and accelerators, and to a composition representing a light mature oil. From the results obtained, we conclude that mature oils will be stable up to 240–260 °C, depending on their composition, and that the thermal cracking of oil to gas is not possible under reasonable basin conditions. The kinetics of petroleum cracking are thus much slower than generally recognized.  相似文献   
5.
Palaeomagnetic study, carried out in the Moscovian (~305 Ma) formation in the Edjeleh anticline, shows the existence of three magnetisation components. Two of them are probably Cenozoic and Permian remagnetisations. The third component determined by both well defined ChRMs and remagnetisation circles analysis passes the fold test. Because the folding started before or during the Stephano-Autunian, this third component is the primary magnetisation. Its palaeomagnetic pole (28.3°S, 58.9°E), close to other poles from the Saharan platform obtained from neighbouring periods but without palaeomagnetic tests, confirms the age of these last data. To cite this article: B. Bayou et al., C. R. Geoscience 334 (2002) 81–87.  相似文献   
6.
Several Triassic and earliest Jurassic sedimentary units from the Colorado Plateau region have distributions of virtual geomagnetic poles (VGPs) that are highly elongate along the path of apparent polar wander (APW). This suggests that the remanent magnetizations measured in these units were acquired over an extended period of time, possibly approaching 35 m.y., and are not precisely coeval with the stratigraphic age of the rock. Comparison with other paleomagnetic studies shows that the observed elongation is not a general attribute of the age of the rock, nor is it related to paleolatitude. The rocks that yield elongate VGP distributions are dominantly red to brown mudstones, and it is possible that their remanence is dominated by a slowly acquired chemical remanent magnetization, as suggested by Larson et al. [J. Geophys. Res. 87 (1982) 1081] and other authors. However, several superficially similar units from the Colorado Plateau have nearly circular VGP distributions. The process by which remanence is acquired in clastic sedimentary rocks merits further study.  相似文献   
7.
We use paleomagnetic data to map Mesozoic absolute motion of North America, using paleomagnetic Euler poles (PEP). First, we address two important questions: (1) How much clockwise rotation has been experienced by crustal blocks within and adjacent to the Colorado Plateau? (2) Why is there disagreement between the apparent polar wander (APW) path constructed using poles from southwestern North America and the alternative path based on poles from eastern North America? Regarding (1), a 10.5° clockwise rotation of the Colorado Plateau about a pole located near 35°N, 102°W seems to fit the evidence best. Regarding (2), it appears that some rock units from the Appalachian region retain a hard overprint acquired during the mid-Cretaceous, when the geomagnetic field had constant normal polarity and APW was negligible.We found three well-defined small-circle APW tracks: 245–200 Ma (PEP at 39.2°N, 245.2°E, R=81.1°, root mean square error (RMS)=1.82°), 200–160 Ma (38.5°N, 270.1°E, R=80.4°, RMS=1.06°), 160 to 125 Ma (45.1°N, 48.5°E, R=60.7°, RMS=1.84°). Intersections of these tracks (the “cusps” of Gordon et al. [Tectonics 3 (1984) 499]) are located at 59.6°N, 69.5°E (the 200 Ma or “J1” cusp) and 48.9°N, 144.0°E (the 160 Ma or “J2” cusp). At these times, the absolute velocity of North America appears to have changed abruptly.North America absolute motion also changed abruptly at the beginning and end of the Cretaceous APW stillstand, currently dated at about 125 and 88 Ma (J. Geophys. Res. 97 (1992b) 19651). During this interval, the APW path degenerates into a single point, implying rotation about an Euler pole coincident with the spin axis.Using our PEP and cusp locations, we calculate the absolute motion of seven points on the North American continent. Our intention is to provide a chronological framework for the analysis of Mesozoic tectonics. Clearly, if APW is caused by plate motion, abrupt changes in absolute motion should correlate with major tectonic events. This follows because large accelerations reflect important changes in the balance of forces acting on the plate, the most important of which are edge effects (subduction, terrane accretion, etc.). Some tectonic interpretations: (1) The J1 cusp may be associated with the inception of rifting of North America away from land masses to the east; the J2 cusp seems to mark the beginning of rapid spreading in the North Atlantic. (2) The J2 cusp signals the beginning of a period of rapid northwestward absolute motion of western North America; motion of tectonostratigraphic terranes in the westernmost Cordillera seems likely to have been directed toward the south during this interval. (3) The interval 88 to 80 Ma saw a rapid decrease in the paleolatitude of North America; unless this represents a period of true polar wander, terrane motion during this time should have been relatively northward.  相似文献   
8.
Rapid deforestation is a major problem throughout the tropical world. The conditions and the pace under which societies and economies of the Third World are currently evolving and growing, combined with the specificities of tropical forests, render the latter increasingly vulnerable. Among the major tropical areas of the world, Southeast Asia is perhaps the one where these conditions have had the most impact on the retreat of the forest cover over the last quarter of this century. This is illustrated through the presentation of two maps of the distribution of five basic forest formations in Southeast Asia circa 1970 and circa 1990. The maps are examined and compared, as well as confronted with statistical assessments of deforestation. Finally, the complex causes behind the retreat of the tropical forests as well as the implications of this retreat are briefly discussed.  相似文献   
9.
Anthophyllite crystals found in ultramafic lenses of the Lepontine Alps (Switzerland) contain coherent, submicroscopic intergrowths of ordered and disordered biopyribole polysomes. The chain width distributions of disordered polysomes were analyzed using high resolution transmission electron microscopy (HRTEM). Chains wider than triple were interpreted as intermediate products in the transformation of anthophyllite to the triple chain silicate jimthompsonite. The concentration of individual chain types is strongly correlated with the reaction progress. Based on observed zipper terminations and the transformation rules given by Veblen and Buseck (1980) a scheme of possible reaction paths leading from anthophyllite to jimthomp sonite is proposed. The reaction scheme and a simple kinetic model for elementary reactions allow modeling of the observed chain width distributions. The model suggests that the complex reaction paths involving steps with increasing and decreasing chain width are more important in the formation of jimthompsonite than the direct transformation from anthophyllite. The wide chains (>triple) occurring as intermediate products of the multi-step paths are structurally closer to talc than jimthompsonite. The back-transformation of these wide chains to triple chains is, therefore, a strong argument that jimthompsonite is a stable phase and not only a metastable intermediate product in the transformation of anthophyllite to talc. Received: 8 July 1996 / Accepted: 13 December 1996  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号