首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   2篇
  国内免费   5篇
地球科学   81篇
  2021年   1篇
  2015年   7篇
  2014年   5篇
  2013年   9篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1967年   1篇
排序方式: 共有81条查询结果,搜索用时 0 毫秒
1.
Komatiite lava flows in the Crixás greenstone belt, Goiás, Brazil, have textures and volcanic structures typical of Archean komatiites, but are geochemically most unusual. The flows are porphyritic and massive, or layered with spinifex upper parts and olivine cumulate lower parts. MgO contents range from 18 to 40%. In such lavas, only olivine (and minor chromite) can have crystallized, but neither major nor trace elements fall on olivine control lines. In MgO variation diagrams, CaO and Sr fall on lines with slopes steeper than olivine control lines; SiO2, FeO, Na2O, K2O and Y show little systematic variation; Zr shows a large variation that does not correlate with MgO; and Al2O3 decreases markedly with decreasing MgO. The aberrant behaviour is highlighted by the REE (rare earth elements) in spinifex and olivine cumulate layers from three flows: in the spinifex layers, chondrite-normalized REE patterns are hump-shaped with maxima at Nd or Sm ((La/Sm)N=0.6, (Gd/Yb)N=1.6–2.3), whereas cumulate zones in the same flows have steadily sloping patterns, with LREE enriched relative to HREE ((La/Sm)N=1.3, (Gd/Yb)N=1.4). Neither normal magmatic processes acting during emplacement of the komatiites, nor thermal erosion and wall-rock assimilation can explain these effects, and we speculate that elements commonly thought of as “immobile” (e.g. Al, Zr, REE) migrated during hydrothermal alteration or metamorphism. A Pb-Pb whole rock isochron gave an age of 2,728±140 Ma and selected Sm-Nd analyses an apparent isochron age of 2,825±98 Ma (ɛNd≈0). The Pb-Pb age is believed to be the approximate time of emplacement. Interpretation of the Sm-Nd data is complicated by the evidence of mobility of REE.  相似文献   
2.
The Nantianwan mafic intrusion in the Panxi region, SW China, part of the ~260?Ma Emeishan large igneous province, consists of the olivine gabbro and gabbronorite units, separated by a transitional zone. Olivine gabbros contain olivine with Fo values ranging from 83 to 87, indicating crystallization from a moderately evolved magma. They have 0.2 to 0.9?wt?% sulfide with highly variable PGE (17?C151?ppb) and variable Cu/Pd ratios (1,500?C32,500). Modeling results indicate that they were derived from picritic magmas with high initial PGE concentrations. Olivine gabbros have negative ??Nd(t) values (?1.3 to ?0.1) and positive ??Os(t) values (5?C15), consistent with low degrees of crustal contamination. Gabbronorites include sulfide-bearing and sulfide-poor varieties, and both have olivine with Fo values ranging from 74 to 79, indicating crystallization from a more evolved magma than that for olivine gabbros. Sulfide-bearing gabbronorites contain 1.9?C4.1?wt?% sulfide and 37?C160?ppb PGE and high Cu/Pd ratios (54,000?C624,000). Sulfide-poor gabbronorites have 0.1?C0.6?wt?% sulfide and 0.2?C15?ppb PGE and very high Cu/Pd ratios (16,900?C2,370,000). Both sulfide-bearing and sulfide-poor gabbronorites have ??Nd(t) values (?0.9 to ?2.1) similar to those for olivine gabbros, but their ??Os(t) values (17?C262) are much higher and more variable than those of the olivine gabbros. Selective assimilation of crustal sulfides from the country rocks is thus considered to have resulted in more radiogenic 187Os of the gabbronorites. Processes such as magma differentiation, crustal contamination and sulfide saturation at different stages in magma chambers may have intervened during formation of the intrusion. Parental magmas were derived from picritic magmas that had fractionated olivine under S-undersaturated conditions before entering a deep-seated staging magma chamber, where the parental magmas crystallized olivine, assimilated minor crustal rocks and reached sulfide saturation, forming an olivine- and sulfide-laden crystal mush in the lower part and evolved magmas in the upper part of the chamber. The evolved magmas were forced out of the staging chamber and became S-undersaturated due to a pressure drop during ascent to a shallow magma chamber. The magmas re-attained sulfide saturation by assimilating external S from S-rich country rocks. They may have entered the shallow magma chamber as several pulses so that several gabbronorite layers each with sulfide segregated to the base and a sulfide-poor upper part. The olivine gabbro unit formed from a new and more primitive magma that entrained olivine crystals and sulfide droplets from the lower part of the staging chamber. A transitional zone formed along the boundary with the gabbronorite unit due to chemical interaction between the two rock units.  相似文献   
3.
Abstract— Polished thin sections of stony-iron meteorites can be prepared easily and quickly using a new technique in which the cooling water to the polishing machine is refrigerated. When using this technique, the silicate and sulfide phases do not heat up and expand differentially, as is often the case when normal procedures are used, and do not pluck out during the polishing process.  相似文献   
4.
5.
Preface     
  相似文献   
6.
7.
The 720-m-thick succession of the Middle Triassic Latemàr Massif (Dolomites, Italy) was used to reconstruct the lagoonal facies architecture of a small atoll-like carbonate platform. Facies analysis of the lagoonal sediments yields a bathymetric interpretation of the lateral facies variations, which reflect a syndepositional palaeorelief. Based on tracing of lagoonal flooding surfaces, the metre-scale shallowing-upward cycles are interpreted to be of allocyclic origin. Short-term sea-level changes led to subaerial exposure of wide parts of the marginal zone, resulting in the development of a tepee belt of varying width. Occasional emergence of the entire lagoon produced lagoon-wide decimetre-thick red exposure horizons. The supratidal tepee belt in the backreef area represented the zone of maximum elevation, which circumscribed the sub- to peritidal lagoonal interior during most of the platform's development. This tepee rim, the subtidal reef and a sub- to peritidal transition zone in between stabilized the platform margin. The asymmetric width of facies belts within individual metre-scale cycles was caused by redistribution processes that reflect palaeowinds and storm paths from the present-day south and west. The overall succession shows stratigraphic changes on a scale of tens of metres from a basal subtidal unit, overlain by three tepee-rich intervals, separated by tepee-poor units composed of subtidal to peritidal facies. This stacking pattern reflects two third-order sequences during the late Anisian to early middle Ladinian.  相似文献   
8.
Cleats and fractures in Pennsylvanian coals in southwestern Indiana were described, statistically analyzed, and subsequently interpreted in terms of their origin, relation to geologic lineaments, and significance for coal permeability and coalbed gas generation and storage. These cleats can be interpreted as the result of superimposed endogenic and exogenic processes. Endogenic processes are associated with coalification (i.e., matrix dehydration and shrinkage), while exogenic processes are mainly associated with larger-scale phenomena, such as tectonic stress.At least two distinct generations of cleats were identified on the basis of field reconnaissance and microscopic study: a first generation of cleats that developed early on during coalification and a second generation that cuts through the previous one at an angle that mimics the orientation of the present-day stress field. The observed parallelism between early-formed cleats and mapped lineaments suggests a well-established tectonic control during early cleat formation. Authigenic minerals filling early cleats represent the vestiges of once open hydrologic regimes. The second generation of cleats is characterized by less prominent features (i.e., smaller apertures) with a much less pronounced occurrence of authigenic mineralization. Our findings suggest a multistage development of cleats that resulted from tectonic stress regimes that changed orientation during coalification and basin evolution.The coals studied are characterized by a macrocleat distribution similar to that of well-developed coalbed methane basins (e.g., Black Warrior Basin, Alabama). Scatter plots and regression analyses of meso- and microcleats reveal a power-law distribution between spacing and cleat aperture. The same distribution was observed for fractures at microscopic scale. Our observations suggest that microcleats enhance permeability by providing additional paths for migration of gas out of the coal matrix, in addition to providing access for methanogenic bacteria.The abundance, distribution, and orientation of cleats control coal fabric and are crucial features in all stages of coalbed gas operations (i.e., exploration and production). Understanding coal fabric is important for coal gas exploration as it may be related to groundwater migration and the occurrence of methanogenic bacteria, prerequisite to biogenic gas accumulations. Likewise, the distribution of cleats in coal also determines pathways for migration and accumulation of thermogenic gas generated during coalification.  相似文献   
9.
Conservationists need to know the degree of habitat fidelity for species of conservation concern. Stable Isotope Analysis in R quantified the contribution of terrestrial vs. saltmarsh primary production sources to terrestrial passerine food webs from four habitats of Sapelo Island, Georgia (USA), saltmarsh, maritime scrub–shrub, maritime broadleaf (oak), and maritime narrowleaf (pine) forests, using δ 13C and δ 15N. Models suggested Northern Parula (Parula americana) in oak forests, White-eyed Vireos (Vireo griseus) in shrub, and Brown-headed Nuthatches (Sitta pusilla) in pine forests derived most of their food from habitats they occupied (53–100%). Saltmarsh provided 47–94% of Painted Bunting (Passerina ciris) food sources, supporting previous findings by Springborn and Meyers (2005). Thus, Painted Bunting conservation in the Southeastern USA should focus on Springborn and Meyers’ suggestion of maritime scrub–shrub habitat and forests with <75% canopy, >50% ground cover, and patches of shrubs that are within 700 m of saltmarsh.  相似文献   
10.
Metallogenic provinces in Europe range in age from the Archaean to the Neogene. Deposit types include porphyry copper and epithermal Cu–Au, volcanic-hosted massive sulphide (VMS), orogenic gold, Fe-oxide–Cu–Au, anorthosite Fe–Ti-oxide and sediment-hosted base-metal deposits. Most of them formed during short-lived magmatic events in a wide range of tectonic settings; many can be related to specific tectonic processes such as subduction, hinge retreat, accretion of island arcs, continental collision, lithosphere delamination or slab tear. In contrast, most sediment-hosted deposits in Europe evolved in extensional, continental settings over significant periods of time. In Europe, as elsewhere, ore formation is an integral part of the geodynamic evolution of the Earth's crust and mantle. Many tectonic settings create conditions conducive to the generation of water-rich magma, but the generation of ore deposits appears to be restricted to locations and short periods of change in temperature and stress, imposed by transitory plate motions. Crustal influence is evident in the strong structural controls on the location and morphology of many ore deposits in Europe. Crustal-scale fault–fracture systems, many involving strike-slip elements, have provided the fabric for major plumbing systems. Rapid uplift, as in metamorphic core complexes, and hydraulic fracturing can generate or focus magmatic–hydrothermal fluid flow that may be active for time spans significantly less than a million years. Once a hydrologically stable flow is established, ore formation is strongly dependent on the steep temperature and pressure gradients experienced by the fluid, particularly within the upper crust. In Europe, significant fracture porosity deep in the crystalline basement (1%) is not only important for magmatic–hydrothermal systems, but allows brines to circulate down through sedimentary basins and then episodically upward, expelled seismically to produce sediment-hosted base-metal deposits and Kupferschiefer copper deposits. Emerging research, stimulated by GEODE, can improve the predicting power of numerical simulations of ore-forming processes and help discover the presence of orebodies beneath barren overburden.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号