首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   38篇
  国内免费   9篇
地球科学   721篇
  2022年   6篇
  2021年   15篇
  2020年   14篇
  2019年   10篇
  2018年   25篇
  2017年   33篇
  2016年   32篇
  2015年   24篇
  2014年   35篇
  2013年   64篇
  2012年   50篇
  2011年   41篇
  2010年   43篇
  2009年   26篇
  2008年   20篇
  2007年   15篇
  2006年   18篇
  2005年   14篇
  2004年   14篇
  2003年   7篇
  2002年   16篇
  2001年   16篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1991年   9篇
  1989年   5篇
  1987年   3篇
  1986年   5篇
  1985年   8篇
  1984年   8篇
  1983年   9篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1969年   3篇
  1954年   3篇
  1916年   3篇
  1914年   4篇
  1912年   4篇
排序方式: 共有721条查询结果,搜索用时 0 毫秒
1.
The present paper deals with the specification of bed erosion flux that accounts for the effects of sediment-induced stratification in the water column. Owing to difficulties in measuring the bed shear stress b and the erosive shear strength s, we suggest a series of methods that combine laboratory and numerical experiments. A simplified turbulent transport model that includes these effects helps to quantify b and s. Focusing on soft stratified beds, the present study considers erosion rate formulas of the form =f exp {[Tb-Ts]} where is a model constant (=1 for Gularte's (1978) formula and =1/2 for Parchure's (1984) formula). First, the bed erosive strength profile s(Z) is adjusted by forcing the turbulent transport model with measured erosion rates. Second, three procedures are suggested to determine the erosion rate formula coefficients f and : a global procedure and two different layer-by-layer procedures. Each procedure is applied to an erosion experiment conducted in a rotating annular flume by Villaret and Paulic (1986). The use of the layer-by-layer procedure based on a least squares fitting technique provides a closer fit than the global procedure. The present study points out the complementarity of experimental and numerical approaches and also suggests possible improvements in laboratory test procedures.  相似文献   
2.
New thermal profiles of Jupiter are retrieved from recent far infrared spectral measurements and for H2 mixing ratios varying from 0.8 to 0.94. The effective temperature corresponding to the inferred thermal profile is 123.15 ± 0.35°K. Far-infrared brightness temperature spectra computed from these profiles are compared to experimental data including measurements made at high spectral resolution in the NH3ν2 band at 10 μm and in NH3 pure rotational bands between 40 and 110 μm. It is found that a strong depletion of NH3 does occur in the Jovian stratosphere and that ammonia seems to be undersaturated in the upper troposphere.  相似文献   
3.
Numerous karstic features have been recognised in the non-carbonaceous micaschists and gneisses of the Yaoundé Pan-African nappe, south of Cameroon. It is shown that their formation was controlled by the structural features of the rocks. The wells and the pipes in the bedrock outcrops point out a current karstification process, resulting from the plagioclase dissolution by the acid rain waters. Hill wall alveoli and caves, of pre-Miocene age, are exhumed features that were done by dissolution in the aquiferous underground. To cite this article: J.-P. Vicat et al., C. R. Geoscience 334 (2002) 545–550.  相似文献   
4.
5.
Single crystals of Li-aegirine LiFe3+Si2O6 were synthesized at 1573?K and 3?GPa, and a polycrystalline sample suitable for neutron diffraction was produced by ceramic sintering at 1223?K. LiFe3+Si2O6 is monoclinic, space group C2/c, a=9.6641(2)?Å, b= 8.6612(3)?Å, c=5.2924(2)?Å, β=110.12(1)° at 300?K as refined from powder neutron data. At 229?K Li-aegirine undergoes a phase transition from C2/c to P21 /c. This is indicated by strong discontinuities in the temperature variation of the lattice parameters, especially for the monoclinic angle β and by the appearance of Bragg reflections (hkl) with h+k≠2n. In the low-temperature form two non-equivalent Si-sites with 〈SiA–O〉=1.622?Å and 〈SiB–O〉=1.624?Å at 100?K are present. The bridging angles of the SiO4 tetrahedra O3–O3–O3 are 192.55(8)° and 160.02(9)° at 100?K in the two independent tetrahedral chains in space group P21 /c, whereas it is 180.83(9)° at 300?K in the high-temperature C2/c phase, i.e. the chains are nearly fully expanded. Upon the phase transition the Li-coordination changes from six to five. At 100?K four Li–O bond lengths lie within 2.072(4)–2.172(3)?Å, the fifth Li–O bond length is 2.356(4)?Å, whereas the Li–O3?A bond lengths amount to 2.796(4)?Å. From 57Fe Mössbauer spectroscopic measurements between 80 and 500?K the structural phase transition is characterized by a small discontinuity of the quadrupole splitting. Temperature-dependent neutron powder diffraction experiments show first occurrence of magnetic reflections at 16.5?K in good agreement with the point of inflection in the temperature-dependent magnetization of LiFe3+Si2O6. Distinct preordering phenomena can be observed up to 35?K. At the magnetic phase transition the unit cell parameters exhibit a pronounced magneto-striction of the lattice. Below T N Li-aegirine shows a collinear antiferromagnetic structure. From our neutron powder diffraction experiments we extract a collinear antiferromagnetic spin arrangement within the ac plane.  相似文献   
6.
This study examines the removal of dissolved metals during the oxidation and neutralization of five acid mine drainage (AMD) waters from La Zarza, Lomero, Esperanza, Corta Atalaya and Poderosa mines (Iberian Pyrite Belt, Huelva, Spain). These waters were selected to cover the spectrum of pH (2.2–3.5) and chemical composition (e.g., 319–2,103 mg/L Fe; 2.85–33.3 g/L SO4=) of the IPB mine waters. The experiments were conducted in the laboratory to simulate the geochemical evolution previously recognized in the field. This evolution includes two stages: (1) oxidation of dissolved Fe(II) followed by hydrolysis and precipitation of Fe(III), and (2) progressive pH increase during mixing with fresh waters. Fe(III) precipitates at pH < 3.5 (stages 1 and 2) in the form of schwertmannite, whereas Al precipitates during stage 2 at pH 5.0 in the form of several hydroxysulphates of variable composition (hydrobasaluminite, basaluminite, aluminite). During these stages, trace elements are totally or partially sorbed and/or coprecipitated at different rates depending basically on pH, as well as on the activity of the SO4= anion (which determines the speciation of metals). The general trend for the metals which are chiefly present as aqueous free cations (Pb2+, Zn2+, Cu2+, Cd2+, Mn2+, Co2+, Ni2+) is a progressive sorption at increasing pH. On the other hand, As and V (mainly present as anionic species) are completely scavenged during the oxidation stage at pH < 3.5. In waters with high activities (> 10−1) of the SO 4= ion, some elements like Al, Zn, Cd, Pb and U can also form anionic bisulphate complexes and be significantly sorbed at pH < 5. The removal rates at pH 7.0 range from around 100% for As, V, Cu and U, and 60–80% for Pb, to less than 20% for Zn, Co, Ni and Mn. These processes of metal removal represent a significant mechanism of natural attenuation in the IPB.  相似文献   
7.
Ocean convection in the Antarctic has been studied many times and has been revealed to be responsible for ice-cover reduction. In the Arctic, proof of that phenomenon has not been documented. It is believed that this phenomenon happens on a smaller scale in the Arctic when local circulation of deep warmer water melts and slows ice production. An example of this is the North Water (NOW) polynya in northern Baffin Bay. A polynya is an area of open water in an otherwise ice-covered area. As ice forms under the fast ice near the boundary of the polynya, ocean salts (brine) are ejected from the newly formed ice. This water, which has an increased concentration of salt, sinks and is replaced by warmer water from below, and this slows ice formation. In our study a coupled one-dimensional thermodynamic snow–fast ice model incorporating ocean heat flux input via a shallow convection model was used. Ice thickness was calculated using a thermodynamic model that included a current-induced entrainment model and a convection model to account for brine rejection during ice growth. Atmospheric observations from Grise Fiord and Thule and ocean profiles around the NOW polynya near these sites were used as input to the model. This purely thermodynamic study enables us to obtain ice thickness values that can be compared with qualitative observations. This modelling study compares two sites related to the NOW polynya. The results indicate that the shallow convection model simulates the reduction of fast ice near Thule but not near Grise Fiord.  相似文献   
8.
Tropical rainforest plays an important role in the global carbon cycle, accounting for a large part of global net primary productivity and contributing to CO2 sequestration. The objective of this work is to simulate potential changes in the rainforest biome in Central America subject to anthropogenic climate change under two emissions scenarios, RCP4.5 and RCP8.5. The use of a dynamic vegetation model and climate change scenarios is an approach to investigate, assess or anticipate how biomes respond to climate change. In this work, the Inland dynamic vegetation model was driven by the Eta regional climate model simulations. These simulations accept boundary conditions from HadGEM2-ES runs in the two emissions scenarios. The possible consequences of regional climate change on vegetation properties, such as biomass, net primary production and changes in forest extent and distribution, were investigated. The Inland model projections show reductions in tropical forest cover in both scenarios. The reduction of tropical forest cover is greater in RCP8.5. The Inland model projects biomass increases where tropical forest remains due to the CO2 fertilization effect. The future distribution of predominant vegetation shows that some areas of tropical rainforest in Central America are replaced by savannah and grassland in RCP4.5. Inland projections under both RCP4.5 and RCP8.5 show a net primary productivity reduction trend due to significant tropical forest reduction, temperature increase, precipitation reduction and dry spell increments, despite the biomass increases in some areas of Costa Rica and Panama. This study may provide guidance to adaptation studies of climate change impacts on the tropical rainforests in Central America.  相似文献   
9.
Summary A comparison of 8 regional atmospheric model systems was carried out for a three-month late summer/early autumn period in 1995 over the Baltic Sea and its catchment area. All models were configured on a common grid using similar surface and lateral boundary conditions, and ran in either data assimilation mode (short term forecasts plus data assimilation), forecast mode (short term forecasts initialised daily with analyses) or climate mode (no re-initialisation of model interior during entire simulation period). Model results presented in this paper were generally post processed as daily averaged quantities, separate for land and sea areas when relevant. Post processed output was compared against available analyses or observations of cloud cover, precipitation, vertically integrated atmospheric specific humidity, runoff, surface radiation and near surface synoptic observations. The definition of a common grid and lateral forcing resulted in a high degree of agreement among the participating model results for most cases. Models operated in climate mode generally displayed slightly larger deviations from the observations than the data assimilation or forecast mode integration, but in all cases synoptic events were well captured. Correspondence to near surface synoptic quantities was good. Significant disagreement between model results was shown in particular for cloud cover and the radiative properties, average precipitation and runoff. Problems with choosing appropriate initial soil moisture conditions from a common initial soil moisture field resulted in a wide range of evaporation and sensible heat flux values during the first few weeks of the simulations, but better agreement was shown at later times. Received September 8, 2000 Revised April 3, 2001  相似文献   
10.
It is desirable to design proxy investigations that target regions where properties reconstructed from calibrated parameters potentially carry high-fidelity information concerning changes in large-scale climate systems. Numerical climate models can play an important role in this task, producing simulations that can be analyzed to produce spatial “fingerprints” of the expected response of various properties under a variety of different scenarios. We will introduce a new method of fingerprinting the Atlantic meridional overturning circulation (AMOC) that not only provides information concerning the sensitivity of the response at a given location to changes in the large-scale system, but also quantifies the linearity, monotonicity and symmetry of the response. In this way, locations that show high sensitivities to changes in the AMOC, but that exhibit, for example, strongly nonlinear behavior can be avoided during proxy investigations. To demonstrate the proposed approach we will use the example of the response of seawater temperatures to changes in the strength of the AMOC. We present results from an earth-system climate model which has been perturbed with an idealized freshwater forcing scenario in order to reduce the strength of the AMOC in a systematic manner. The seawater temperature anomalies that result from the freshwater forcing are quantified in terms of their sensitivity to the AMOC strength in addition to the linearity and monotonicity of their response. A first-order reversal curve (FORC) approach is employed to investigate and quantify the irreversibility of the temperature response to a slowing and recovering AMOC. Thus, FORCs allow the identification of areas that are unsuitable for proxy reconstructions because their temperature versus AMOC relationship lacks symmetry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号