首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
地球科学   60篇
  2016年   5篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2010年   1篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   7篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
Detecting redshifted 21-cm emission from neutral hydrogen in the early Universe promises to give direct constraints on the epoch of reionization (EoR). It will, though, be very challenging to extract the cosmological signal (CS) from foregrounds and noise which are orders of magnitude larger. Fortunately, the signal has some characteristics which differentiate it from the foregrounds and noise, and we suggest that using the correct statistics may tease out signatures of reionization. We generate mock data cubes simulating the output of the Low Frequency Array (LOFAR) EoR experiment. These cubes combine realistic models for Galactic and extragalactic foregrounds and the noise with three different simulations of the CS. We fit out the foregrounds, which are smooth in the frequency direction, to produce residual images in each frequency band. We denoise these images and study the skewness of the one-point distribution in the images as a function of frequency. We find that, under sufficiently optimistic assumptions, we can recover the main features of the redshift evolution of the skewness in the 21-cm signal. We argue that some of these features – such as a dip at the onset of reionization, followed by a rise towards its later stages – may be generic, and give us a promising route to a statistical detection of reionization.  相似文献   
2.
Robust estimates of magnetotelluric and geomagnetic response functions are determined using the coherency and expected uniformity of the magnetic source field as quality criteria. The method is applied on data sets of three simultaneously recording sites. For the data acquisition we used a new generation of geophysical equipment (S.P.A.M. MkIII), which comprises novel concepts of parallel computing and networked, digital data transmission. The data-processing results show that the amount of noise on the horizontal components of the magnetic field varies considerably in time, between sites and over the frequency range. The removal of such contaminated data beforehand is essential for most data-processing schemes, as the magnetic channels are usually assumed to be free of noise. The standard remote reference method is aimed at reducing bias in response function estimates. However, this does not necessarily improve their precision as our results clearly show. With our method, on the other hand, we can filter out source field irregularities, thereby providing suitable working conditions for the robust algorithm, and eventually obtain considerably improved results. Contrary to previous concepts, we suggest rejecting as much data as feasible in order to concentrate on the remaining parts of high-quality observations.  相似文献   
3.
We have developed a new array method combining conventional migration with a slowness-backazimuth deviation weighting scheme. All seismic traces are shifted based on the theoretical traveltime of the scattered wave from specific gridpoints in a 3-D volume. Observed slowness and backazimuth are calculated for each raypath and compared with theoretical values in order to estimate slowness and backazimuth deviations. Subsequently, stacked energy calculated by a conventional migration method is weighted by the slowness and backazimuth deviations to suppress any arrival energy whose slowness and backazimuth are inconsistent with the expected theoretical values. This new method was applied to two P- wave data sets which comprise (1) underside reflections at the 410 and 660 km mantle discontinuities and (2) D" reflections as well as their corresponding synthetic data sets. The results show that the weighting scheme dramatically increases the resolution of the migrated images and enables us to obtain well-constrained, focused images, making upper-mantle discontinuities and D" reflections more distinct by reducing their surrounding energy.  相似文献   
4.
5.
One of the uncertainties in the field of carbon dioxide capture and storage (CCS) is caused by the parameterization of geochemical models. The application of geochemical models contributes significantly to calculate the fate of the CO2 after its injection. The choice of the thermodynamic database used, the selection of the secondary mineral assemblage as well as the option to calculate pressure dependent equilibrium constants influence the CO2 trapping potential and trapping mechanism. Scenario analyses were conducted applying a geochemical batch equilibrium model for a virtual CO2 injection into a saline Keuper aquifer. The amount of CO2 which could be trapped in the formation water and in the form of carbonates was calculated using the model code PHREEQC. Thereby, four thermodynamic datasets were used to calculate the thermodynamic equilibria. Furthermore, the equilibrium constants were re-calculated with the code SUPCRT92, which also applied a pressure correction to the equilibrium constants. Varying the thermodynamic database caused a range of 61% in the amount of trapped CO2 calculated. Simultaneously, the assemblage of secondary minerals was varied, and the potential secondary minerals dawsonite and K-mica were included in several scenarios. The selection of the secondary mineral assemblage caused a range of 74% in the calculated amount of trapped CO2. Correcting the equilibrium constants with respect to a pressure of 125 bars had an influence of 11% on the amount of trapped CO2. This illustrates the need for incorporating sensitivity analyses into reaction pathway modeling.  相似文献   
6.
Capture and geological sequestration of CO2 from large industrial sources is considered a measure for reducing anthropogenic emissions of CO2 and thus mitigating climate change. One of the main storage options proposed are deep saline formations, as they provide the largest potential storage capacities among the geologic options. A thorough assessment of this type of storage site therefore is required. The CO2-MoPa project aims at contributing to the dimensioning of CO2 storage projects and to evaluating monitoring methods for CO2 injection by an integrated approach. For this, virtual, but realistic test sites are designed geometrically and fully parameterized. Numerical process models are developed and then used to simulate the effects of a CO2 injection into the virtual test sites. Because the parameterization of the virtual sites is known completely, investigation as well as monitoring methods can be closely examined and evaluated by comparing the virtual monitoring result with the simulation. To this end, the monitoring or investigation method is also simulated, and the (virtual) measurements are recorded and evaluated like real data. Application to a synthetic site typical for the north German basin showed that pressure response has to be evaluated taking into account the layered structure of the storage system. Microgravimetric measurements are found to be promising for detecting the CO2 phase distribution. A combination of seismic and geoelectric measurements can be used to constrain the CO2 phase distribution for the anticline system used in the synthetic site.  相似文献   
7.
8.
We compute the specific angular momentum distributions for a sample of low-mass disc galaxies observed by Swaters. We compare these distributions to those of dark matter haloes obtained by Bullock et al. from high-resolution N -body simulations of structure formation in a ΛCDM universe. We find that although the disc mass fractions are significantly smaller than the universal baryon fraction, the total specific angular momenta of the discs are in good agreement with those of dark matter haloes. This suggests that discs form out of only a small fraction of the available baryons, but yet manage to draw most of the available angular momentum. In addition we find that the angular momentum distributions of discs are clearly distinct from those of the dark matter; discs lack predominantly both low and high specific angular momenta. Understanding these findings in terms of a coherent picture for disc formation is challenging. Cooling, feedback and stripping, which are the main mechanisms to explain the small disc mass fractions found, seem unable to simultaneously explain the angular momentum distributions of the discs. In fact, it seems that the baryons that make up the discs must have been born out of angular momentum distributions that are clearly distinct from those of ΛCDM haloes. However, the dark and baryonic mass components experience the same tidal forces, and it is therefore expected that they should have similar angular momentum distributions. Therefore, understanding the angular momentum content of disc galaxies remains an important challenge for our picture of galaxy formation.  相似文献   
9.
Most established methods to characterize aquifer structure and hydraulic conductivities of hydrostratigraphical units are not capable of delivering sufficient information in the spatial resolution that is desired for sophisticated numerical contaminant transport modeling and adapted remediation design. With hydraulic investigation methods based on the direct-push (DP) technology such as DP slug tests, DP injection logging, and the hydraulic profiling tool, it is possible to rapidly delineate hydrogeological structures and estimate their hydraulic conductivity in shallow unconsolidated aquifers without the need for wells. A combined application of these tools was used for the investigation of a contaminated German refinery site and for the setup of hydraulic aquifer models. The quality of DP investigation and the models was evaluated by comparisons of tracer transport simulations using these models and measured breakthroughs of two natural gradient tracer tests. Model scenarios considering the information of all tools together showed good reproduction of the measured breakthroughs, indicating the suitability of the approach and a minor impact of potential technical limitations. Using the DP slug tests alone yielded significantly higher deviations for the determined hydraulic conductivities compared to considering two or three of the tools. Realistic aquifer models developed on basis of such combined DP investigation approaches can help optimize remediation concepts or identify flow regimes for aquifers with a complex structure.  相似文献   
10.
Potential pathways in the subsurface may allow upwardly migrating gaseous CO2 from deep geological storage formations to be released into near surface aquifers. Consequently, the availability of adequate methods for monitoring potential CO2 releases in both deep geological formations and the shallow subsurface is a prerequisite for the deployment of Carbon Capture and Storage technology. Geoelectrical surveys are carried out for monitoring a small-scale and temporally limited CO2 injection experiment in a pristine shallow aquifer system. Additionally, the feasibility of multiphase modeling was tested in order to describe both complex non-linear multiphase flow processes and the electrical behavior of partially saturated heterogeneous porous media. The suitability of geoelectrical methods for monitoring injected CO2 and geochemically altered groundwater was proven. At the test site, geoelectrical measurements reveal significant variations in electrical conductivity in the order of 15?C30?%. However, site-specific conditions (e.g., geological settings, groundwater composition) significantly influence variations in subsurface electrical conductivity and consequently, the feasibility of geoelectrical monitoring. The monitoring results provided initial information concerning gaseous CO2 migration and accumulation processes. Geoelectrical monitoring, in combination with multiphase modeling, was identified as a useful tool for understanding gas phase migration and mass transfer processes that occur due to CO2 intrusions in shallow aquifer systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号