首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
地球科学   13篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Sediment samples were collected from Keratsini harbour, Saronikos gulf, Greece and were analysed for chlorinated organic pesticides (DDTs, HCB, Lindane) and polychlorinated biphenyls (PCBs). High total DDTs values were detected in all the sediments samples ranging from 9.1 to 75.6 mug/g, dry weight. PCBs concentrations range from 47.8 to 351.8 ng/g. The results and especially the high concentrations of DDTs reflect the influence of the industrial and urban wastes in the pollution for the Keratsini harbour environment.  相似文献   
2.
The dynamic response and seismic performance of bridges may be appreciably affected by numerous contributing factors, with soil–structure interaction being the dominant exogenous influence. The most familiar form is the so-called soil–pile interaction, but embankment–abutment interaction is also documented through field observations and analytical investigations, particularly evident in integral R.C. bridges. Recent studies have shown that this form of interaction may significantly alter the bridge response and should be taken into account during design and assessment, especially in the case of typical highway overcrossings that have abutments supported on earth embankments. In light of this emerging problem and in order to facilitate quantitative estimates of the interaction effects, the question of appropriate modeling and seismic assessment of R.C. integral bridges is the main object of the present paper. Based on already established procedures to account for soil–structure interaction, a new approach is proposed to model the contribution of the embankment, the bent and the abutments to the overall bridge response. Furthermore, the capacity curve of the entire bridge system is evaluated through the implementation of Incremental Dynamic Analysis (IDA), therefore allowing for seismic assessment of the complex superstructure–foundation system with well established displacement based procedures. Using as a benchmark case two typical instrumented U.S. highway bridges located in California, the proposed method is implemented and provided results from this analysis are correlated successfully with available field data. Results obtained from the analysis indicate excessive displacement demands for the entire bridge–embankment system owing to the embankment contribution and the soil degradation under increasing shear strains. Furthermore, seismic performance is strongly related to the central bent deformation capacity, with soil–pile interaction effects being of critical importance.  相似文献   
3.
The seismic vulnerability of old multi‐storey reinforced concrete (R.C.) buildings reinforced with substandard details is assessed as a function of interstorey drift demand imposed by the design earthquake while considering brittle termination of elastic response of the critical members of the structure due to a premature shear failure. Interstorey drift demand is related to column and wall translational stiffnesses which are expressed through analytical derivations in terms of the floor area ratios of gravity and lateral load bearing members in the critical floor. Interstorey drift capacity is related to the available transverse reinforcement and the axial load ratio of the vertical members. The significance of the area ratio of vertical members in the typical floor as an index of vulnerability is explored with reference to the limitations in the value of axial load ratio used in R.C. design in order to secure ductile flexural behavior, and also with reference to the stability index of gravity load bearing members. Interstorey Drift Spectra are derived for the existing R.C. buildings suitable for rapid seismic vulnerability screening but also as a guide for rehabilitation of the existing structures. Lightly reinforced or substandard reinforced concrete buildings that reportedly collapsed during previous earthquakes are used as example case studies in order to calibrate the proposed methodology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
4.
Most of the available models of monolithic reinforced concrete joints under seismic action focus on estimation of cracking and ultimate shear strengths. Very few studies have been directed towards developing expressions for the associated joint deformations at the milestone response points so as to compose a limit-state model for joints that would be compatible with the emerging framework of deformation based seismic assessment and design methods. This objective is pursued in the present paper with particular emphasis on monolithic bridge joints. Deformation capacity at yielding and failure of joints is derived by establishing equilibrium and geometric compatibility of smeared stresses and strains, and satisfying material constitutive relationships. Expressions and model parameters are calibrated with the database of published bridge joint tests assembled from International literature, using statistical evaluation. From the mean values of the design parameters simplified equations for shear strength and ultimate shear strain of bridge joints are proposed.  相似文献   
5.
An attempt is made to couple the one dimensional COBEL-ISBA (Code de Brouillard à l’échelle Locale-Interactions Soil Biosphere Atmosphere) model with the WRF (Weather Research and Forecasting)–ARW (Advanced Research WRF) numerical weather prediction model to study a fog event that formed on 20 January 2008 over Thessaloniki Airport, Greece. It is the first time that the coupling of COBEL and WRF models is achieved and applied to a fog event over an airport. At first, the performance of the integrated WRF–COBEL system is investigated, by validating it against the available surface observations. The temperature and humidity vertical profiles were used for initializing the model. The performance of WRF–COBEL is considered successful, since it realistically simulated the fog onset and dissipation better than the WRF alone. The COBEL’s sensitivity to initial conditions such as temperature and specific humidity perturbations was also tested. It is found that a small increase of temperature (~1°C) counteracts fog development and results in less fog density. On the other hand, a small decrease of temperature results in much denser fog formation. It is concluded that the integrated model approach for aviation applications can be useful to study fog impact on local traffic and aviation.  相似文献   
6.
7.
Seismic performance and dynamic response of bridge–embankments during strong or moderate ground excitations are investigated through finite element (FE) modelling and detailed dynamic analysis. Previous research studies have established that bridge–embankments exhibit increasingly flexible performance under high‐shear deformation levels and that soil displacements at bridge abutment supports may be significant particularly in the transverse direction. The 2D equation of motion is solved for the embankment, in order to evaluate the dynamic characteristics and to describe explicitly the seismic performance and dynamic response under transverse excitations accounting for soil nonlinearities, soil–structure interaction and imposed boundary conditions (BCs). Using the proposed model, equivalent elastic analysis was performed so as to evaluate the dynamic response of approach embankments while accounting for soil–structure interaction. The analytical procedures were applied in the case of a well‐documented bridge with monolithic supports (Painter Street Overcrossing, PSO) which had been instrumented and embankment participation was identified from its response records after the 1971 San Fernando earthquake. The dynamic characteristics and dynamic response of the PSO embankments were evaluated for alternative BCs accounting for soil–structure interaction. Explicit expressions for the evaluation of the critical embankment length Lc are provided in order to quantify soil contribution to the overall bridge system under strong intensity ground excitations. The dynamic response of the entire bridge system (deck–abutments–embankments) was also evaluated through simplified models that considered soil–structure interaction. Results obtained from this analysis are correlated with those of detailed 3D FE models and field data with good agreement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
8.
The behavior of bridge monolithic connections is modeled using a simplified mathematical model that accounts for stress equilibrium, compatibility of deformations, and the state of bond of longitudinal column bars anchored through the joint panel. In this regard, a stress gradient factor is introduced, to model the profile of bar stresses along the anchorage. To establish this factor, two independent mechanisms of stress transfer are considered: a bond mechanism between the anchored bars and the surrounding concrete and a friction mechanism between the anchored bars and the transverse bars that enclose and restrain the anchorages. The model is used for calculation of the shear stress–shear strain relationship of all tests found in the international literature on bridge monolithic connections that showed shear type of failure under simulated seismic loading. Joint strength values calculated with the proposed model are compared with the experimental results. Based on this comparison the proposed model is verified for use in interpretation of bridge monolithic connection behavior and design.  相似文献   
9.
Collapse of structures in severe earthquakes is synonymous with loss of vertical load bearing capacity in the columns and walls of the structural system. This paper identifies criteria that could be used in the context of preliminary assessment in order to rapidly identify from the large inventory of existing, substandard construction, those buildings that are more likely candidates for catastrophic collapse. Proposed criteria include (i) a stiffness index in order to determine the severity of seismic displacement demand and, (ii) a base-shear strength index associated with typical column details representative of the state of practice from the era of the building’s period of construction. The criteria may be used to characterize the primary deficiencies of the building and the level of spectral acceleration that may be tolerated prior to failure. Ten buildings representative of older construction practices used in the Mediterranean countries prior to the introduction of capacity design procedures, which suffered excessive damage or collapse in past earthquakes, are used to proof-test the applicability of the procedure and the practical advantages of spectrum compatible stiffness and strength criteria that may be used in determining a proper retrofit strategy.  相似文献   
10.
The maintenance of integrity and functionality of nonstructural components during earthquake excitations is of paramount importance since mechanical failure of those systems can have dramatic consequences in terms of property damage and life safety of the buildings' occupants. This paper explores the dynamic response of nonstructural elements attached on multistory buildings with well‐established floor diaphragm action. Depending on the type of support conditions, seismic response of nonstructural components may be controlled either by acceleration or displacement: Nonstructural components that are subjected to uniform support excitation are controlled primarily by the absolute spectral acceleration developing at their point of attachment on the supporting building. On the contrary, seismic response of multiply supported nonstructural components depends primarily on the relative displacements between successive support points that are imposed by the supporting building during lateral sway. These findings are illustrated from the analytical formulation and its solution through time history analysis of the governing dynamic equation of motion of the primary and secondary components of a system modeled using finite elements. The model encompasses the assembly of a multistory building along with a multiply supported gas pipeline network. It is shown that the dependence of the seismic response of nonstructural components may be linked to the deformed shape of the supporting building at the state of its maximum lateral roof displacement, thereby enabling the definition of design procedures for these systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号