首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  国内免费   1篇
地球科学   30篇
  2021年   1篇
  2018年   1篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   6篇
  2009年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
2.
3.
Climate changes at the multi-decadal scale are often associated with multi-decadal phase shifts of the dominant sea surface temperature (SST) pattern, such as the Pacific Decadal Oscillation (PDO). The PDO may be associated with the North Pacific branch of the Thermohaline Circulation (THC). Great earthquakes (M 〉8), particularly along the route of the THC, might modulate the vertical mixing and bring deep, cold water to surface, contributing to multi-decadal changes in surface currents and the PDO. This may eventually lead to multi-decadal climate changes. We tested this hypothesis for the Pacific Ocean where great earthquakes have been frequently recorded. We found associations between the PDO and recurrent earthquakes along the route of the deep currents of the THC in the modern period since 1900, and relationships between hydroclimate change in Monsoonal Asia and historical earthquakes since 1300. However, it should be noted that this hypothesis is very preliminary and has many gaps that needs further evidences from more observational records and modeling studies.  相似文献   
4.
Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing-season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern-analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance.  相似文献   
5.
Air temperature variations in Europe and northern Asia are strongly affected by atmospheric circulation. A large-scale study of temperature signals is presented, using a newly available global gridded daily temperature dataset. Major types of European Grosswetterlagen (large-scale weather patterns) and the Russian Vangengeim–Girs classification are compared in their spatial applicability to air temperatures within the past 110 years (1901–2010). The consistency of spatial patterns in the three most recent decades (1981–2010) is investigated, and temperature changes are interpreted against the backdrop of changes in character and frequency of circulation patterns. Both classifications largely explain the observed temperature variability. Spatial patterns are large-scale and strong in both regions, especially in winter. Both spatial extent and signal magnitude show a distinct seasonality with maximum values in winter and minimum ones in summer. Spatial patterns show little changes in Europe; yet the ability to explain temperature variability in northern Asia decreased within 1981–2010. European winter warming corresponds to increased maritime and to decreased continental air mass inflow, superimposed on the general warming trend. Northern Asian winter warming is partly explainable by circulation changes in January and February, but to a lesser extend in December. These results may be used to advance input variables of global climate models and to improve their performance in the European–Northern Asian area.  相似文献   
6.
Air pressure field and circulation pattern frequencies were investigated to (1) locate and compare positions of the underlying pressure fields, (2) analyse the spatial dimension of affected areas, (3) create schematic maps of important circulation types and (4) compare the classification types in their response to the data. Two manual classifications were used, selected for the length of their time series and their applicability to a larger region: the Grosswetterlagen classification (GWLc) and the Vangengeim–Girs classification (VGc). Their time series were correlated with a global set of gridded monthly sea-level pressure data. Results show the different conceptual orientation of VGc (hemispheric) and GWLc (continental). The highest correlation values and the largest affected areas are visible in winter, where patterns frequently extended into northern Africa and western Asia. Schematic maps, illustrating the average location of main pressure centres, are provided for basic classes of both classifications. Re-arranging GWLc subtypes increases the classifications comparability with the VGc. Analysis of moving correlation coefficients reveals high fluctuations in the relation of both classifications over time.  相似文献   
7.
The relative importance of climate, forest fires and human population size on long‐term boreal forest composition were statistically investigated at regional and local scales in Fennoscandia. We employ pollen data from lakes, reflecting regional vegetation, and small forest hollows, reflecting local vegetation, from Russia, Finland and Sweden to reconstruct the long‐term forest composition. As potential drivers of the Holocene forest dynamics we consider climate, generated from a climate model and oxygen isotope data, past forest fires generated from sedimentary charcoal data and human population size derived from radiocarbon dated archaeological findings. We apply the statistical method of variation partitioning to assess the relative importance of these environmental variables on long‐term boreal forest composition. The results show that climate is the main driver of the changes in Holocene boreal forest composition at the regional scale. However, at the local scale the role of climate is relatively small. In general, the importance of forest fires is low both at regional and local scales. The fact that both climate and forest fires explain relatively small proportions of variation in long‐term boreal vegetation in small forest hollow records demonstrates the complexity of factors affecting stand‐scale forest dynamics. The relative importance of human population size was low in both the prehistorical and the historical time periods. However, this is the first time that this type of data has been used to statistically assess the importance of human population size on boreal vegetation and the spatial representativeness of the data may cause bias to the analysis.  相似文献   
8.
Oil Spill Risk Assessments (OSRAs) are widely employed to support decision making regarding oil spill risks. This article adapts the ISO-compliant OSRA framework developed by Sepp Neves et al. (J Environ Manag 159:158–168, 2015) to estimate risks in a complex scenario where uncertainties related to the meteo-oceanographic conditions, where and how a spill could happen exist and the risk computation methodology is not yet well established (ensemble oil spill modeling). The improved method was applied to the Algarve coast, Portugal. Over 50,000 simulations were performed in 2 ensemble experiments to estimate the risks due to operational and accidental spill scenarios associated with maritime traffic. The level of risk was found to be important for both types of scenarios, with significant seasonal variations due to the the currents and waves variability. Higher frequency variability in the meteo-oceanographic variables were also found to contribute to the level of risk. The ensemble results show that the distribution of oil concentrations found on the coast is not Gaussian, opening up new fields of research on how to deal with oil spill risks and related uncertainties.  相似文献   
9.
A very large surface inversion, which would not have been detected at the official recording height of 2 m above the mire surface, was recorded at the snow surface of an earth hummock in Lapland. The maximum inversion was 35 °C, and the monthly temperature departure was 7.8 °C in December 1992. The characteristics of the surface inversion are compared with conditions during another winter when no long inversion periods occurred. The presence of this surface inversion may explain the formation of new permafrost in pounus, even when official records showed no unusually low temperatures.  相似文献   
10.
We studied multiple variables in a sediment core from Lake Kipojärvi, northern Finland, to investigate Holocene ecosystem changes in relation to catchment characteristics and known climate variations. We focused on a forested catchment because previous paleolimnological studies conducted in Fennoscandia focused mainly on subarctic lakes within a range of shifting treeline(s). Data on aquatic macrophytes, diatoms, Cladocera, C:N ratio, organic matter (LOI) and regional vegetation (pollen), revealed a three-phase limnological development. The early Holocene, species-rich, mesotrophic lake was transformed into an oligotrophic, species-poor aquatic ecosystem by the early middle Holocene, ca. 7,500 cal years BP, earlier than has generally been reported. The transition involved considerable changes in aquatic macrophytes. Changes in the Cladocera and diatom communities appear to have been linked to aquatic macrophyte development, which in turn, was probably regulated by catchment development and hydrology, and a consequent decrease in nutrient input from the catchment. During the more humid late Holocene, surface flow from the catchment probably increased, but the lake??s nutrient status remained oligotrophic. Possible reasons for low nutrient concentration in the late Holocene include: 1) slower biogeochemical cycling due to cooler climate, 2) a new hydrologic outlet and associated shorter water-retention times, and 3) accelerated peatland development in the catchment that affected water flow patterns and nutrient cycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号