首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22674篇
  免费   3850篇
  国内免费   2749篇
数理化   29273篇
  2024年   26篇
  2023年   500篇
  2022年   517篇
  2021年   777篇
  2020年   932篇
  2019年   905篇
  2018年   740篇
  2017年   738篇
  2016年   1071篇
  2015年   1085篇
  2014年   1258篇
  2013年   1608篇
  2012年   2080篇
  2011年   2154篇
  2010年   1453篇
  2009年   1318篇
  2008年   1497篇
  2007年   1466篇
  2006年   1285篇
  2005年   1143篇
  2004年   791篇
  2003年   694篇
  2002年   639篇
  2001年   492篇
  2000年   469篇
  1999年   512篇
  1998年   386篇
  1997年   384篇
  1996年   298篇
  1995年   312篇
  1994年   312篇
  1993年   259篇
  1992年   212篇
  1991年   212篇
  1990年   196篇
  1989年   117篇
  1988年   85篇
  1987年   90篇
  1986年   61篇
  1985年   53篇
  1984年   45篇
  1983年   30篇
  1982年   26篇
  1981年   20篇
  1980年   13篇
  1979年   3篇
  1975年   2篇
  1973年   1篇
  1957年   4篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Cycloparaphenylene (CPP) shows modulated photophysical and electronic properties due to its strained structure and radially oriented π-electron system. Incorporation of CPP into metal-organic frameworks (MOFs) could transfer its extensive properties in solution to porous solids. Moreover, with the unique arrangement of the macrocycles and their interactions with the framework, emerging characteristics are anticipated. As an example of “robust dynamics”, we synthesized the first MOF structure (FDM-1001) with CPP precisely anchored to the ordered framework by employing a [8]CPP-containing linear dicarboxylate linker. Metric relationship between the dynamic macrocycles and the robust backbone creates ideal π-π interactions between them, which leads to an essentially directional arrangement of [8]CPP in the three-dimensional space. Furthermore, the MOF with [8]CPP could be successfully oxidized to generate an infinite array of radicals that show enhanced air stability compared to its molecular analogue.  相似文献   
972.
Journal of Solid State Electrochemistry - We report effectiveness of dopants selected from group 13, such as B, Ga, and In, on the conductivity of Li1.5Al0.5Ge1.5(PO4)3 (LAGP) that is recognized as...  相似文献   
973.
974.
The rational design of highly active hexagonal boron nitride (h-BN) catalysts at the atomic level is urgent for aerobic reactions. Herein, a doping impurity atom strategy is adopted to increase its catalytic activities. A series of doping systems involving O, C impurities and B, N antisites are constructed and their catalytic activities for molecular O2 have been studied by density functional theory (DFT) calculations. It is demonstrated that O2 is highly activated on ON and BN defects, and moderately activated on CB and CN defects, however, it is not stable on NB and OB defects. The subsequent application in oxidative desulfurization (ODS) reactions proves the ON and C-doped (CB, CN) systems to be good choice for sulfocompounds oxidization, especially for dibenzothiophene (DBT). While the BN antisite is not suitable for such aerobic reaction due to the extremely stable B−O*−B species formed during the oxidation process.  相似文献   
975.
Attaching AIE-active L1 ([1,1′:2′,1′′:4′′,1′′′-quaterphenyl]-2-yldiphenylphosphane) to AuCl, shortened the distances of P−C bonds to promote electron cloud overlap between AuI and L1 , affords 1 ( L1 AuCl) with aggregation-induced phosphorescence enhancement (AIPE) activity by 3LMCT transitions. Then substituting the coplanar L2 (9-ethynylanthracene) for the Cl in 1 providing 2 , switches the luminescence to aggregation-caused quenching (ACQ) activity. Furthermore, we restore the performance from ACQ to AIPE by metathesis reactions to transfer 2 into 1 . It is versatile synthetic strategy of reversible transformation between 1 and 2 that switches the luminescence of organogold(I) between AIPE and ACQ through balancing auxiliary ligands around the given metal.  相似文献   
976.
Liu  Yudong  Chen  Bing  Wang  Dengshi  Jiang  Nan  Tan  Junkun  Fu  Jing  Wu  Baohui  Hu  Yuanhao  Guo  Zhihong 《Journal of Thermal Analysis and Calorimetry》2021,144(4):1369-1379
Journal of Thermal Analysis and Calorimetry - The surface tensions of graphene oxide nanofluids of five mass concentrations were measured by the oscillation droplet method in an acoustic levitator....  相似文献   
977.
This work investigates the oxidation of hydrogen near its second explosion limit in a turbulent flow reactor at pressures of 1 to 8 bar, temperatures of 950 K and an equivalence ratio of 0.035. The concentrations of H2, O2 and H2O are measured along the reactor and simulated using several kinetic models from the literature. These experiments demonstrate evident negative pressure dependence from roughly 1 to 4 bar, with further increases in pressure resuming its positive impact on reaction rates. The simulated and measured species concentrations along the reactor generally agree within a factor of 2.Further investigation is then conducted to measure the rate coefficient of reaction H + O2 (+ M) = HO2 (+M) (R2), which is one of the most sensitive reactions in hydrogen's oxidation chemistry at these conditions. This investigation is conducted by using nitric oxide (NO) as a dopant and measuring the resulting, quasi-steady-state concentrations of NO2. The rate coefficients are obtained at 950 – 1010 K. Combined with literature results, an Arrhenius expression is proposed, k2,0N2 = 4.50 × 1020 (T/K)?1.73 [cm6 mole?2 s?1], for the reaction rate at the low-pressure limit over 500 K – 2000 K with N2 as the bath gas. Simulations using the models from the literature with the proposed Arrhenius expression for this reaction then demonstrate improved agreement with the experiments.  相似文献   
978.
Yang  Changshui  Jiang  Houli  Wang  Xing  Yang  Chao  Mao  Haoyu  Dong  Xiaoyun 《Chemistry of Natural Compounds》2022,58(5):970-974
Chemistry of Natural Compounds -  相似文献   
979.
Keratin is widely recognized as a high‐quality renewable protein resource for biomedical applications. Despite their extensive existence, keratin resources such as feathers, wool, and hair exhibit high stability and mechanical properties because of their high disulfide bond content. Consequently, keratin extraction is challenging and its application is greatly hindered. In this work, a biological extraction strategy is proposed for the preparation of bioactive keratin and the fabrication of self‐assembled keratin hydrogels (KHs). Based on moderate and controlled hydrolysis by keratinase, keratin with a high molecular weight of approximately 45 and 28 kDa that retain its intrinsic bioactivities is obtained. The keratin products show excellent ability to promote cell growth and migration and are conferred with significant antioxidant ability because of their intrinsically high cysteine content. In addition, without the presence of any cross‐linking agent, the extracted keratin can self‐assemble into injectable hydrogels. The KHs exhibit a porous network structure and 3D culture ability, showing potential in promoting wound healing. This enzyme‐driven keratin extraction strategy opens up a new approach for the preparation of keratin that can self‐assemble into injectable hydrogels for biomedical engineering.  相似文献   
980.
A library of symmetrical linear oligothiophene was prepared employing decarboxylative cross‐coupling reaction as the key transformation. Thiophene potassium carboxylate salts were used as cross‐coupling partners without the need of co‐catalyst, base, or additives. This method demonstrates complete chemoselectivity and is a comprehensive greener approach compared to the existing methods. The modularity of this approach is demonstrated with the preparation of discreet oligothiophenes with up to 10 thiophene repeat units. Symmetrical oligothiophenes are prototypical organic semiconductors where their molecular electrical doping as a function of the chain length can be assessed spectroscopically. An oligothiophene critical length for integer charge transfer was observed to be 10 thiophene units, highlighting the potential use of discrete oligothiophenes as doped conduction or injection layers in organic electronics applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号