首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
生物科学   48篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1995年   1篇
  1992年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
11.
Iron is an essential element to support the growth and survival of Trichomonas vaginalis. It plays a critical role in the host-parasite interaction, and modulates the expression of virulence factors in this protozoan. In this work, parasites grown in iron-rich and iron-depleted media were analyzed by (i) light and scanning electron microscopy and (ii) 2-DE and MS. Withdrawal of iron from the culture medium resulted in dramatic changes in both the morphology and in the proteome pattern of T. vaginalis. Trophozoites underwent transformation from ellipsoid or amoeboid forms to rounded cells, whose flagella and axostyle were internalized. Forty-five proteins differentially expressed in parasites cultivated in the absence of iron were identified. In iron-depleted parasites, enzymes involved in energetic metabolism, proteolysis and hydrogenosomal iron-sulfur (Fe-S) proteins were down-regulated or even suppressed. Among up-regulated proteins, six isoforms of actin were detected. In addition, phosphoenolpyruvate carboxykinase, putative lactate dehydrogenase, and putative adenosine triphosphatase were also up-regulated or were exclusively observed in gels related to iron-depleted parasites. Our data demonstrate that iron has a pivotal role in the regulation of the morphological transformation of T. vaginalis and modulates the expression of both Fe-S and non-Fe-S proteins in the parasite.  相似文献   
12.
用解剖学技术研究和比较了富钟瘰螈Paramesotriton fuzhongensis和广西瘰螈Paramesotriton guangxiensis的泄殖系统。结果显示两种瘰螈的泄殖系统基本相同,仅生殖腺在颜色和形状上稍有差异。它们具有后位肾,雄螈肾脏由副睾肾和尾肾组成。但雄螈尾肾发出的多条集尿管并不通往后位肾管而是向后汇合成副尿管通往泄殖腔。后位肾管主要起输精作用,而副尿管则负责输尿。结果揭示雄性泄殖管道有功能分离的趋势,这在两栖类中处于较高进化水平。  相似文献   
13.
周炜  邓群 《微生物学杂志》2012,32(4):100-102
探讨泌尿生殖道分泌物支原体培养的临床意义.取泌尿生殖道感染的男性尿拭子和女性宫颈分泌物1 095份进行支原体培养和药敏试验,根据药敏结果进行治疗及疗效观察.1095例患者中支原体阳性365例(33.3%),其中解脲脲原体(Ureaplasma urealyticum,Uu)感染287例,人型支原体(Mycoplasma hominis,Mh)感染55例,Uu与Mh混合感染23例.药敏试验结果显示对强力霉素、米诺环素敏感率分别为90.4%和88.8%.对林可霉素、诺氟沙星、氧氟沙星的耐药率分别为86.8%、82.5%、81.1%.男性患者根据药敏结果分别进行强力霉素和米诺环素单药治疗,其治愈率为79.5%、76.9%,女性患者联合干扰素栓剂治疗,治愈率达83.6%和82.2%.鉴于泌尿生殖道分泌物支原体的高感染率以及并不理想的临床治愈率,广泛应用分泌物支原体培养法值得商榷.  相似文献   
14.
A detailed knowledge of the developmental anatomy of the embryonic mouse urogenital tract is required to recognize mutant urogenital phenotypes in transgenic and knock-out mice. Accordingly, the purpose of this article is to review urogenital development in the mouse embryo and to give an illustrated methodological protocol for the dissection of urogenital organ rudiments at 12-13 days of gestation (E12-13) to isolate the urogenital ridge and at E16 to isolate the seminal vesicle, Müllerian duct, Wolffian duct, and prostatic rudiment, the urogenital sinus (UGS). The UGS can be cultured and, in the presence of testosterone, prostatic buds form in vitro. Because of the importance of mesenchymal-epithelial interactions in urogenital development, methods for the isolation of epithelium and mesenchyme from the embryonic urogenital sinus are also described. Urogenital sinus mesenchyme (UGM) and urogenital sinus epithelium (UGE) can be used to construct tissue recombinants that can either be grown in vitro or grafted in vivo for the study of epithelial-mesenchymal interactions in prostatic development.  相似文献   
15.
16.
The ducts associated with sperm transport from the testicular lobules to the Wolffian ducts in Ambystoma maculatum were examined with transmission electron microscopy. Based on the ultrastructure and historical precedence, new terminology for this network of ducts is proposed that better represents primary hypotheses of homology. Furthermore, the terminology proposed better characterizes the distinct regions of the sperm transport ducts in salamanders based on anatomy and should, therefore, lead to more accurate comparisons in the future. While developing the above ontology, we also tested the hypothesis that nephrons from the genital kidney are modified from those of the pelvic kidney due to the fact that the former nephrons function in sperm transport. Our ultrastructural analysis of the genital kidney supports this hypothesis, as the basal plasma membrane of distinct functional regions of the nephron (proximal convoluted tubule, distal convoluted tubule, and collecting tubule) appear less folded (indicating decreased surface area and reduced reabsorption efficiency) and the proximal convoluted tubule possesses ciliated epithelial cells along its entire length. Furthermore, visible luminal filtrate is absent from the nephrons of the genital kidney throughout their entire length. Thus, it appears that the nephrons of the genital kidney have reduced reabsorptive capacity and ciliated cells of the proximal convoluted tubule may increase the movement of immature sperm through the sperm transport ducts or aid in the mixing of seminal fluids within the ducts. © J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
17.
The mouse prostate develops from a component of the lower urinary tract (LUT) known as the urogenital sinus (UGS). This process requires androgens and signaling between mesenchyme and epithelium. Little is known about DNA methylation during prostate development, including which factors are expressed, whether their expression changes over time, and if DNA methylation contributes to androgen signaling or influences signaling between mesenchyme and epithelium. We used in situ hybridization to evaluate the spatial and temporal expression pattern of mRNAs which encode proteins responsible for establishing, maintaining or remodeling DNA methylation. These include DNA methyltrasferases, DNA deaminases, DNA glycosylases, base excision repair and mismatch repair pathway members. The mRNA expression patterns were compared between male and female LUT prior to prostatic bud formation (14.5 days post coitus (dpc)), during prostatic bud formation (17.5 dpc) and during prostatic branching morphogenesis (postnatal day (P) 5). We found dramatic changes in the patterns of these mRNAs over the course of prostate development and identified examples of sexually dimorphic mRNA expression. Future investigation into how DNA methylation patterns are established, maintained and remodeled during the course of embryonic prostatic bud formation may provide insight into prostate morphogenesis and disease.  相似文献   
18.
The mouse prostate develops from a component of the lower urinary tract (LUT) known as the urogenital sinus (UGS). This process requires androgens and signaling between mesenchyme and epithelium. Little is known about DNA methylation during prostate development, including which factors are expressed, whether their expression changes over time, and if DNA methylation contributes to androgen signaling or influences signaling between mesenchyme and epithelium. We used in situ hybridization to evaluate the spatial and temporal expression pattern of mRNAs which encode proteins responsible for establishing, maintaining or remodeling DNA methylation. These include DNA methyltrasferases, DNA deaminases, DNA glycosylases, base excision repair and mismatch repair pathway members. The mRNA expression patterns were compared between male and female LUT prior to prostatic bud formation (14.5 days post coitus (dpc)), during prostatic bud formation (17.5 dpc) and during prostatic branching morphogenesis (postnatal day (P) 5). We found dramatic changes in the patterns of these mRNAs over the course of prostate development and identified examples of sexually dimorphic mRNA expression. Future investigation into how DNA methylation patterns are established, maintained and remodeled during the course of embryonic prostatic bud formation may provide insight into prostate morphogenesis and disease.  相似文献   
19.
20.
Homeobox gene Msx2 is widely expressed during both embryogenesis and postnatal development and plays important roles during organogenesis. We developed an Msx2‐rtTA BAC transgenic line which can activate TetO‐Cre expression in Msx2‐expressing cells upon doxycycline (Dox) treatment. Using the Rosa26‐LacZ (R26R) reporter line, we show that rtTA is activated in Msx2‐expressing organs including the limb, heart, external genitalia, urogenital system, hair follicles and craniofacial regions. Moreover, we show that in body appendages, the transgene can be activated in different domains depending on the timing of Dox treatment. In addition, the transgene can also be effectively activated in adult tissues such as the hair follicle and the urogenital system. Taken together, this Msx2‐rtTA;TetO‐Cre system is a valuable tool for studying gene function in the development of the aforementioned organs in a temporal and spatially‐restricted manner, as well as for tissue lineage tracing of Msx2‐expressing cells. When induced postnatally, this system can also be used to study gene function in adult tissues without compromising normal development and patterning. genesis 47:352–359, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号