首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17633篇
  免费   1671篇
  国内免费   1926篇
生物科学   21230篇
  2024年   97篇
  2023年   488篇
  2022年   542篇
  2021年   683篇
  2020年   769篇
  2019年   1003篇
  2018年   886篇
  2017年   742篇
  2016年   838篇
  2015年   811篇
  2014年   879篇
  2013年   1793篇
  2012年   734篇
  2011年   807篇
  2010年   727篇
  2009年   755篇
  2008年   888篇
  2007年   831篇
  2006年   827篇
  2005年   770篇
  2004年   695篇
  2003年   677篇
  2002年   615篇
  2001年   419篇
  2000年   389篇
  1999年   319篇
  1998年   336篇
  1997年   280篇
  1996年   233篇
  1995年   196篇
  1994年   159篇
  1993年   140篇
  1992年   136篇
  1991年   83篇
  1990年   74篇
  1989年   60篇
  1988年   50篇
  1987年   42篇
  1986年   32篇
  1985年   42篇
  1984年   76篇
  1983年   52篇
  1982年   65篇
  1981年   53篇
  1980年   33篇
  1979年   24篇
  1978年   19篇
  1977年   20篇
  1975年   10篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Reactive oxygen species (ROS) are implicated to play a role in initiating rheumatoid arthritis (RA) pathogenesis. We have investigated the mechanism(s) by which essential redox-active trace metals (RATM) may induce cell proliferation and cell death in rabbit synovial fibroblasts. These fibroblast-like synovial (FLS) cells, which express Toll-like receptor 4 (TLR4), were used as a model system that plays a role in potentially initiating RA through oxidative stress. Potassium peroxychromate (PPC, [Cr5+]), ferrous chloride (FeCl2, [Fe2+]), and cuprous chloride (CuCl, [Cu+]) in the indicated valency states were used as exogenous pro-oxidants that can induce oxidative stress through TLR4 coupled activation that also causes HMGB1 release. We measured the proliferation index (PI) of FLS, and examined the effect of RATM oxidants on apoptosis and autophagy by fluorescence cell-sorting flow cytometry (FC). Cell cycle was analysed by FC and autophagy-related protein expression levels were measured by western blot. Our data showed that as RATM as prooxidants increased intracellular ROS (iROS) that can induce oxidative stress. Whereas iROS increased PI in FLS, these reactive species also protected cells against apoptosis by inducing autophagy. Our results indicate that ROS/TLR4-coupled activation may contribute to the pathogenesis of RA in FLS by induction of autophagy. The signalling pathway by which inflammation and its tissue destructive sequel may occur in RA underlies the need for developing therapeutic agents that can inhibit release of tissue-damaging high mobility group box 1 (HMGB1), cytokines, and possess both trace metal chelating capacity and oxidant scavenging properties in a directed combinatorial therapy for RA.  相似文献   
992.
The presence of multiple foot types has been used to explain the variability of foot structure observed among healthy adults. These foot types were determined by specific static morphologic features and included rectus (well aligned hindfoot/forefoot), planus (low arched), and cavus (high arched) foot types. Unique biomechanical characteristics of these foot types have been identified but reported differences in segmental foot kinematics among them has been inconsistent due to differences in neutral referencing and evaluation of only select discrete variables. This study used the radiographically-indexed Milwaukee Foot Model to evaluate differences in segmental foot kinematics among healthy adults with rectus, planus, and cavus feet based on the true bony alignment between segments. Based on the definitions of the individual foot types and due to conflicting results in previous literature, the primary study outcome was peak coronal hindfoot position during stance phase. Additionally, locally weighted regression smoothing with alpha-adjusted serial t-test analysis (LAAST) was used to compare these foot types across the entire gait cycle. Average peak hindfoot inversion was −1.6° ± 5.1°, 6.7° ± 3.5°, and 13.6° ± 4.6°, for the Planus, Rectus, and Cavus Groups, respectively. There were significant differences among all comparisons. Differences were observed between the Rectus and Planus Groups and Cavus and Planus Groups throughout the gait cycle. Additionally, the Planus Group had a premature peak velocity toward coronal varus and early transition toward valgus, likely due to a deficient windlass mechanism. This assessment of kinematic data across the gait cycle can help understand differences in dynamic foot function among foot types.  相似文献   
993.
Statins, with their lipid-lowering properties, are a first-line therapy for the prevention of cardiovascular diseases. Recent evidence, however, suggests that statins can increase the risk of new-onset diabetes (NOD). The molecular mechanisms of statin-induced NOD are not precisely known, although some pathophysiologic mechanisms have been suggested. Specific to the beta cell, these mechanisms include alterations in insulin secretion, changes in ion channels, modulation of signaling pathways, and inflammation/oxidative stress. Outwith the beta cell, other suggested mechanisms involve adipocytes, including alterations in adipocyte differentiation and modulation of leptin and adiponectin, and genetic and epigenetic mechanisms, including alterations in microRNA. The evidence supporting these and other mechanisms will be discussed. Greater understanding of the underlying mechanisms linking the onset of diabetes to statin therapy is essential and clinically relevant, as it may enable novel preventative or therapeutic approaches to be instituted and guide the production of a new generation of statins lacking this side effect.  相似文献   
994.
Prasinophytes (Chlorophyta) are a diverse, paraphyletic group of planktonic microalgae for which benthic species are largely unknown. Here, we report a sand‐dwelling, marine prasinophyte with several novel features observed in clonal cultures established from numerous locations around Australia. The new genus and species, which we name Microrhizoidea pickettheapsiorum (Mamiellophyceae), alternates between a benthic palmelloid colony, where cell division occurs, and a planktonic flagellate. Flagellates are short lived, settle and quickly resorb their flagella, the basal bodies then nucleate novel tubular appendages, termed “microrhizoids”, that lack an axoneme and function to anchor benthic cells to the substratum. To our knowledge, microrhizoids have not been observed in any other green alga or protist, are slightly smaller in diameter than flagella, generally contain nine microtubules, are long (3–5 times the length of flagella) and are not encased in scales. Following settlement, cell divisions result in a loose, palmelloid colony, each cell connected to the substratum by two microrhizoids. Flagellates are round to bean‐shaped with two long, slightly uneven flagella. Both benthic cells and flagellates, along with their flagella, are encased in thin scales. Phylogenies based on the complete chloroplast genome of Microrhizoidea show that it is clearly a member of the Mamiellophyceae, most closely related to Dolichomastix tenuilepsis. More taxon‐rich phylogenetic analyses of the 18S rRNA gene, including metabarcodes from the Tara Oceans and Ocean Sampling Day projects, confidently show the distinctive nature of Microrhizoidea, and that the described biodiversity of the Mamiellophyceae is a fraction of its real biodiversity. The discovery of a largely benthic prasinophyte changes our perspective on this group of algae and, along with the observation of other potential benthic lineages in environmental sequences, illustrates that benthic habitats can be a rich ground for algal biodiscovery.  相似文献   
995.
Expressing, isolating, and characterizing recombinant proteins is crucial to many disciplines within the biological sciences. Different molecular tagging technologies have been developed to enable each individual step of protein production, from expression through purification and characterization. Monitoring the entire production process requires multiple tags or molecular interactions, because no individual tag has provided the comprehensive breadth of utility. An ideal molecular tag is small and does not interrupt expression, solubility, folding or function of the protein being purified and can be used throughout the production process. We adapted and integrated a split-luciferase system (NanoBiT®, Promega ®) to perform the range of techniques essential to protein production. We developed a simple method to monitor protein expression in real time to optimize expression conditions. We constructed a novel affinity chromatography system using the split-luciferase system to enable purification. We adapted western blot analysis, enzyme-linked immunosorbent assay, and cell-based bioassay to characterize the expressed proteins. Our results demonstrate that a single-tag can fulfill all aspects needed throughout protein production.  相似文献   
996.
997.
《Journal of molecular biology》2019,431(24):4817-4833
Factor XI (FXI), the zymogen of activated FXI (FXIa), is an attractive target for novel anticoagulants because FXI inhibition offers the potential to reduce thrombosis risk while minimizing the risk of bleeding. BAY 1213790, a novel anti-FXIa antibody, was generated using phage display technology. Crystal structure analysis of the FXIa–BAY 1213790 complex demonstrated that the tyrosine-rich complementarity-determining region 3 loop of the heavy chain of BAY 1213790 penetrated deepest into the FXIa binding epitope, forming a network of favorable interactions including a direct hydrogen bond from Tyr102 to the Gln451 sidechain (2.9 Å). The newly discovered binding epitope caused a structural rearrangement of the FXIa active site, revealing a novel allosteric mechanism of FXIa inhibition by BAY 1213790. BAY 1213790 specifically inhibited FXIa with a binding affinity of 2.4 nM, and in human plasma, prolonged activated partial thromboplastin time and inhibited thrombin generation in a concentration-dependent manner.  相似文献   
998.
999.
A small library of antiplasmodial methoxy-thiazinoquinones, rationally designed on the model of the previously identified hit 1, has been prepared by a simple and inexpensive procedure. The synthetic derivatives have been subjected to in vitro pharmacological screening, including antiplasmodial and toxicity assays. These studies afforded a new lead candidate, compound 9, endowed with higher antiplasmodial potency compared to 1, a good selectivity index when tested against a panel of mammalian cells, no toxicity against RBCs, a synergistic antiplasmodial action in combination with dihydroartemisinin, and a promising inhibitory activity on stage V gametocyte growth. Computational studies provided useful insights into the structural requirements needed for the antiplasmodial activity of thiazinoquinone compounds and on their putative mechanism of action.  相似文献   
1000.
In this work we described the synthesis and evaluation of cytotoxic and apoptotic activity of novel pyrrolopyrimidine derivatives against A549, PC3 and MCF-7 cells. Among the synthesized compounds, 6b, 8a, 9a and 7a, 8b displayed the significant cytotoxic activities against A549 and PC3 cells with IC50 value of 0.35, 1.48, 1.56 and 1.04, 1.89 µM, respectively. It was found that A549 cells were more sensitive to synthesized compounds than PC3 and MCF-7 cells. In order to evaluate the mechanism of cytotoxic activity in A549, compounds 6b, 8a and 9a were selected for further studies. Annexin V binding assay and western blot analysis results revealed that 6b, 8a and 9a induced apoptosis in A549 cells by intrinsic apoptotic pathway through the activation pro-apoptotic proteins such as Bim, Bax, Bak, Puma and deactivation of anti-apoptotic proteins including Bcl-2, Mcl-1 and Bcl-XL accompanied by the activation of caspase-3, caspase-9 and cleavage of PARP. Also, compounds 6b, 8a and 9a triggered apoptosis in HCT116 wt cells via activation of caspase-3 and caspase-9, but not in HCT116 Bax/Bak KO cells, indicating resistance to 6b, 8a and 9a treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号