首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6144篇
  免费   705篇
  国内免费   150篇
生物科学   6999篇
  2024年   8篇
  2023年   159篇
  2022年   104篇
  2021年   186篇
  2020年   247篇
  2019年   299篇
  2018年   271篇
  2017年   269篇
  2016年   267篇
  2015年   265篇
  2014年   330篇
  2013年   442篇
  2012年   258篇
  2011年   291篇
  2010年   239篇
  2009年   305篇
  2008年   341篇
  2007年   358篇
  2006年   255篇
  2005年   241篇
  2004年   220篇
  2003年   165篇
  2002年   188篇
  2001年   157篇
  2000年   124篇
  1999年   122篇
  1998年   94篇
  1997年   69篇
  1996年   72篇
  1995年   60篇
  1994年   58篇
  1993年   47篇
  1992年   46篇
  1991年   65篇
  1990年   32篇
  1989年   34篇
  1988年   32篇
  1987年   36篇
  1986年   26篇
  1985年   29篇
  1984年   28篇
  1983年   13篇
  1982年   47篇
  1981年   22篇
  1980年   16篇
  1979年   12篇
  1978年   8篇
  1974年   6篇
  1973年   11篇
  1972年   12篇
排序方式: 共有6999条查询结果,搜索用时 0 毫秒
81.
This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha?1 year?1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha?1 year?1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha?1 year?1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.  相似文献   
82.
Plant phenology—the timing of cyclic or recurrent biological events in plants—offers insight into the ecology, evolution, and seasonality of plant‐mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season‐initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are “cryptic”—that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.  相似文献   
83.
The literature concerning relationships among different measures of plant disease intensity is reviewed. Some previous confusion over the definition of the terms “incidence” and “severity” is noted and clarified. The review highlights the common features of relationships between incidence and severity, incidence and disease density, and incidence at pairs of scales in a spatial hierarchy. These relationships often show a similar saturation curve form that can frequently be described empirically using the complementary log‐log transformation. A catalogue of alternative functional forms is provided. Practical applications in varietal evaluation are discussed.  相似文献   
84.
Aim We tested whether coarse‐grained occurrence data can be used to detect climatic niche shifts between native and non‐native ranges for a set of widely introduced freshwater fishes. Location World‐wide. Methods We used a global database of freshwater fish occurrences at the river basin scale to identify native and non‐native ranges for 18 of the most widely introduced fish species. We also examined climatic conditions within each river basin using fine‐grained climate data. We combined this information to test whether climatic niche shifts have occurred between native and non‐native ranges. We defined climatic niche shifts as instances where the ranges of a climatic variable within native and non‐native basins exhibit zero overlap. Results We detected at least one climatic niche shift for each of the 18 studied species. However, we did not detect common patterns in the thermal preference or biogeographic origin of the non‐native fish, hence suggesting a species‐specific response. Main conclusions Coarse‐grained occurrence data can be used to detect climatic niche shifts. They also enable the identification of the species experiencing niche shifts, although the mechanisms responsible for these shifts (e.g. local adaptation, dispersal limitation or physiological constraints) have yet to be determined. Furthermore, the coarse‐grained approach, which highlights regions where climatic niche shifts have occurred, can be used to select specific river basins for more detailed, fine‐grained studies.  相似文献   
85.
甘蓝类无蜡粉亮叶性状遗传规律及其利用的研究   总被引:4,自引:0,他引:4  
我们于1987年从普通结球甘蓝“迎春”品种自交二代群体中,发现了无蜡粉亮叶甘蓝突变株, 经过多年对其遗传规律进行的研究,认为这一无蜡粉亮叶性状是由一对隐性纯合基因控制。利用这一性状可培育结球甘蓝及其它甘蓝类具有这同一性状的新类型、新品种,提高其品质,更可作一代杂种利用的标记性状,充分发挥一代杂种的优势。  相似文献   
86.
In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery. A new era of data‐model integration requires investment in accessible, scalable, and transparent tools that integrate the expertise of the whole community, including both modelers and empiricists. This roadmap focuses on five key opportunities for community tools: the underlying foundations of community cyberinfrastructure; data ingest; calibration of models to data; model‐data benchmarking; and data assimilation and ecological forecasting. This community‐driven approach is a key to meeting the pressing needs of science and society in the 21st century.  相似文献   
87.
Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT‐CERES‐Wheat, DSSAT‐Nwheat, APSIM‐Wheat, and WheatGrow) were evaluated with 4 years of environment‐controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30–0.60%, total aboveground biomass was reduced by 0.37–0.43%, and grain yield was reduced by 1.0–1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies.  相似文献   
88.
近年来,在兔、大鼠、小鼠和犬等动物种属成功地建立了巴豆油、醋酸、感染与创伤诱导的痔疮动物模型,每种动物模型各有优缺点,应用合理的动物模型能更好地开展痔的实验和临床研究。随着治痔药物的深入研究,动物模型有很好发展和应用,本文综述了痔疮动物模型制作方法研究进展。  相似文献   
89.
90.
The role of maintenance respiration in plant growth   总被引:20,自引:8,他引:20  
Abstract Plant growth is the balance of photosynthetic gains and respiratory losses, and it is therefore essential to consider respiration in analyses of plant productivity. The partitioning of dark respiratory losses into two functional components, a growth component and a maintenance component, has proved useful. The growth loss is that associated with synthesis of new biomass while the maintenance loss is that associated with maintenance of existing biomass. Experimental evidence indicates that the respiratory cost of maintenance in herbaceous plants is about equal to the cost of growth over a growing season, with daily maintenace expenditures less important in the small, rapidly growing plant but increasing in significance as plant size increases and the relative growth rate decreases. Because it is such a large fraction of the total carbon budget of a plant, any variations in maintenance requirements may result in significant alterations in productivity. In the present work the theoretical and empirical bases of maintenance respiration are described: magnitudes of maintenance expenditures are summarized; and applications to models of plant growth and productivity are discussed. It is concluded that the costs of maintenance should be included in analyses of plant growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号