首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34640篇
  免费   1595篇
  国内免费   1648篇
生物科学   37883篇
  2024年   40篇
  2023年   374篇
  2022年   488篇
  2021年   680篇
  2020年   731篇
  2019年   924篇
  2018年   797篇
  2017年   776篇
  2016年   875篇
  2015年   1163篇
  2014年   1889篇
  2013年   2873篇
  2012年   1518篇
  2011年   1555篇
  2010年   1348篇
  2009年   1545篇
  2008年   1578篇
  2007年   1625篇
  2006年   1512篇
  2005年   1417篇
  2004年   1272篇
  2003年   1221篇
  2002年   1102篇
  2001年   820篇
  2000年   809篇
  1999年   762篇
  1998年   739篇
  1997年   655篇
  1996年   603篇
  1995年   635篇
  1994年   619篇
  1993年   503篇
  1992年   495篇
  1991年   397篇
  1990年   397篇
  1989年   304篇
  1988年   348篇
  1987年   281篇
  1986年   240篇
  1985年   351篇
  1984年   409篇
  1983年   268篇
  1982年   299篇
  1981年   144篇
  1980年   124篇
  1979年   122篇
  1978年   74篇
  1977年   39篇
  1976年   43篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Human pluripotent stem cells (PSCs) are presumed to have robust DNA repair pathways to ensure genome stability. PSCs likely need to protect against mutations that would otherwise be propagated throughout all tissues of the developing embryo. How these cells respond to genotoxic stress has only recently begun to be investigated. Although PSCs appear to respond to certain forms of damage more efficiently than somatic cells, some DNA damage response pathways such as the replication stress response may be lacking. Not all DNA repair pathways, including the DNA mismatch repair (MMR) pathway, have been well characterized in PSCs to date. MMR maintains genomic stability by repairing DNA polymerase errors. MMR is also involved in the induction of cell cycle arrest and apoptosis in response to certain exogenous DNA-damaging agents. Here, we examined MMR function in PSCs. We have demonstrated that PSCs contain a robust MMR pathway and are highly sensitive to DNA alkylation damage in an MMR-dependent manner. Interestingly, the nature of this alkylation response differs from that previously reported in somatic cell types. In somatic cells, a permanent G2/M cell cycle arrest is induced in the second cell cycle after DNA damage. The PSCs, however, directly undergo apoptosis in the first cell cycle. This response reveals that PSCs rely on apoptotic cell death as an important defense to avoid mutation accumulation. Our results also suggest an alternative molecular mechanism by which the MMR pathway can induce a response to DNA damage that may have implications for tumorigenesis.  相似文献   
62.
R. Meyer  W. Nagl 《Protoplasma》1993,172(2-4):132-135
Summary Video-densitometric DNA measurements of Feulgenstained tissues of 42 day old eggs of the corn snake,Elaphe g. guttata (Columbridae, Serpentes), revealed a basic DNA content of 2C=2.17 pg, with somatic polyploidy in the allantois, the chorioallontois, the yolk sac, and other extraembryonic membranes. The maximum value determined was 128C (in binucleate cells 2×128C) at the distal pole of the egg. This is the first report of somatic polyploidy in a snake, and one of the first in reptiles in general.  相似文献   
63.
Denaturing reversed-phase (RP) high performance liquid chromatography (HPLC) is usually achieved by elevating column temperature. In this article, an alternative method involving using a mobile phase that contains urea and performing HPLC at room temperature is described. The efficacy of the new method was demonstrated by analyzing a 61-mer oligodeoxynucleotide (ODN) and double-stranded (ds) ODNs. The multiple peaks of the 61-mer ODN under normal conditions merged into one under the denaturing conditions. The broad single peaks of dsODNs under normal conditions were split into two sharp peaks.  相似文献   
64.
Four minireviews deal with aspects of the α-ketoglutarate/iron-dependent dioxygenases in this eighth Thematic Series on Metals in Biology. The minireviews cover a general introduction and synopsis of the current understanding of mechanisms of catalysis, the roles of these dioxygenases in post-translational protein modification and de-modification, the roles of the ten-eleven translocation (Tet) dioxygenases in the modification of methylated bases (5mC, T) in DNA relevant to epigenetic mechanisms, and the roles of the AlkB-related dioxygenases in the repair of damaged DNA and RNA. The use of α-ketoglutarate (alternatively termed 2-oxoglutarate) as a co-substrate in so many oxidation reactions throughout much of nature is notable and has surprisingly emerged from biochemical and genomic analysis. About 60 of these enzymes are now recognized in humans, and a number have been identified as having critical functions.  相似文献   
65.
In addition to a role for de novo protein synthesis in apoptosis we have previously shown that activation of a protein phosphatase or loss of activity of a kinase is also important in radiation-induced apoptosis in human cells [Baxter, and Lavin (1992): J Immunol 148:149–1954]. We show here that some inhibitors of protein kinases exacerbate radiation-induced apoptosis in the human cell line BM13674. The specific protein kinase A inhibitor isoquinoline sulfonamide (20 μM) gave rise to significantly increased levels of apoptosis at 2–6 h postirradiation compared to values after radiation exposure only. The same concentration of isoquinolinesulfonamide, which was effective in increasing apoptosis, reduced activity markedly. A 66% inhibition of cyclic AMP-dependent protein kinase A activity occurred in unirradiated cells at this concentration of H89 and activity was reduced to 58% in irradiated cells. Calphostin C, a specific inhibitor of protein kinase C, at a concentration of 0.1 μM, which caused 68% inhibition of enzyme activity in irradiated cells, failed to enhance the level of radiation-induced apoptosis. Other kinase inhibitors did not lead to an additional increase in apoptosis over and above that observed after irradiation. The results obtained here provide further support for an important role for modification of existing proteins during radiation-induced apoptosis.  相似文献   
66.
Abstract

An efficient synthesis of adenosine bearing pyrrolepolyamide 1 was achieved by coupling of 3 with 2. The CD spectra obtained at several [ligand ]/[duplex] ratios allowed verification of the formation complex of the DNA duplex [d(CGCAAATTGGC)/d(GCCAATTTGCG)] with 1.  相似文献   
67.
The CDKN1C gene encodes a cyclin‐dependent kinase inhibitor and is one of the key genes involved in the development of Beckwith–Wiedemann syndrome and cancer. In this study, using a direct sequencing approach based on a single nucleotide polymorphism (SNP) at genomic DNA and cDNA levels, we show that CDKN1C exhibits monoallelic expression in all seven studied organs (heart, liver, spleen, lung, kidney, muscle and subcutaneous fat) in cattle. To investigate how methylation regulates imprinting of CDKN1C in cattle, allele‐specific methylation patterns in two putative differential methylation regions (DMRs), the CDKN1C DMR and KvDMR1, were analyzed in three tissues (liver, spleen and lung) using bisulfite sequencing PCR. Our results show that in the CDKN1C DMR both parental alleles were unmethylated in all three analyzed tissues. In contrast, KvDMR1 was differentially methylated between the two parental alleles in the same tissues. Statistical analysis showed that there is a significant difference in the methylation level between the two parental alleles (< 0.01), confirming that this region is the DMR of KvDMR1 and that it may be correlated with CDKN1C imprinting.  相似文献   
68.
69.
70.
Molecular techniques provide powerful tools for studying the geographic structure of hybrid zones and the dynamics of gene exchange between incipient species. We examined allozyme variation at five loci (PGM, GPI, MDH-1, MDH-2, and LDH) for 27 populations of Palaemonetes kadiakensis from the central, coastal, and eastern regions of Texas. Central Texas populations of P. kadiakensis exhibited highly significant linkage disequilibrium and departures from Hardy-Weinberg genotype proportions. In populations with linkage disequilibrium, allelic differences at GPI defined two types of P. kadiakensis, designated A and B. Both types existed in central Texas with little or no evidence of interbreeding, whereas the populations from all other localities showed complete introgression of type B alleles into the type A gene pool. We also examined ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) variation in a subset of populations, chosen to cover a range of geographic locations and levels of linkage disequilibrium. Two groups of mtDNA haplotypes and two restriction fragment patterns for the rDNA corresponded to allozyme type A and B individuals in populations exhibiting linkage disequilibrium. In populations with ongoing hybridization, all hybrid animals (N= 15) exhibited type A mtDNA. Exhibition of type A mtDNA indicated that type A females had mated successfully with type B males, but type B females had not mated successfully with type A males. Genotype distributions suggest reduced reproduction by hybrid offspring in central Texas populations. These patterns are consistent with a mosaic model of hybrid zone dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号