首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35984篇
  免费   3684篇
  国内免费   2088篇
工业技术   41756篇
  2024年   126篇
  2023年   451篇
  2022年   816篇
  2021年   1042篇
  2020年   1080篇
  2019年   898篇
  2018年   840篇
  2017年   1122篇
  2016年   1245篇
  2015年   1476篇
  2014年   2082篇
  2013年   2050篇
  2012年   2517篇
  2011年   2872篇
  2010年   2132篇
  2009年   2263篇
  2008年   2236篇
  2007年   2760篇
  2006年   2421篇
  2005年   2135篇
  2004年   1796篇
  2003年   1497篇
  2002年   1233篇
  2001年   1044篇
  2000年   847篇
  1999年   654篇
  1998年   399篇
  1997年   412篇
  1996年   316篇
  1995年   272篇
  1994年   178篇
  1993年   120篇
  1992年   93篇
  1991年   74篇
  1990年   59篇
  1989年   59篇
  1988年   54篇
  1987年   25篇
  1986年   10篇
  1985年   6篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   6篇
  1979年   9篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
11.
ABSTRACT

The concept of digital game-based learning (DGBL) evolves rapidly together with technological enhancements of virtual reality (VR) and smart phones. However, the mental workload (MWL) that VR-training applications demand and motivational qualities originating from user experience (UX) should be identified in order to create effective and enjoyable training/learning challenges that fit with individual users’ capabilities. This study examined the effects of reality-based interaction (RBI) and VR on measures of student motivation and MWL, in a mental arithmetic game for secondary school pupils. In a randomised controlled trial with sixty school children, a mental arithmetic game was tested with three different interaction and two different presentation methods – VR RBI, VR head-mounted-display tapping and tablet flick-gesture. Results found a significant effect of RBI on MWL but no differences in enjoyment of training were found between VR-experience and tablet training-experience. In fact, adding the gaming-context to the mental arithmetic task created an enjoyable, motivating experience regardless of presentation or interaction-style.  相似文献   
12.
13.
The arc welding has been used in various welding methods because it is inexpensive and high in strength after welding. However, it is a problem that accidents such as collapse of the bridge occur because of the welding defects. The welding of low cost and high productivity is required without the welding defects. The pulsed TIG welding is inexpensive and capable of high‐quality welding. The electromagnetic force contributing to penetration changes because the transient response of arc temperature and iron vapor generated from anode occurs. However, the analysis of pulsed TIG welding with metal vapor has been elucidated only metal vapor concentration near anode with transient phenomenon and heat flux. Thus, the theoretical elucidation of penetration depth with control factor has not been researched. In this paper, the contribution of metal vapor mass at the periphery part of pulsed arc to the electromagnetic force in the weld pool is elucidated. As a result, the iron vapor mass at periphery part decreased with increasing the frequency. The iron vapor was stagnated at axial center within one cycle. The electromagnetic force to the penetration depth direction in weld pool increased at axial center. Therefore, the metal vapor mass at periphery part plays an important role for the electromagnetic force increment at axial center.  相似文献   
14.
The capture of particles by charged droplets was simulated by considering the electrostatic interactions of droplet-droplet and droplet-particle. The results indicate that the electrostatic repulsion between droplets leads to a dynamic accumulation mode of particles. However, the droplet spacing has an insignificant effect on the capture efficiency when the electrostatic deposition predominates. The increase of droplet charge remarkably improves the capture efficiency, in which the capture of fine particles accounts for the largest proportion. Compared to the droplet charge, the droplet size shows a limited improvement in the capture efficiency. Reducing the droplet velocity prolongs the capture time instead of enhancing the capture capacity per unit time, thereby improving capture efficiency.  相似文献   
15.
Musculoskeletal injuries are well-known disorders among the agricultural tractor operators. Overexertion is a critical factor which can agitate these injuries. Physical body characteristics should be measured for an ergonomically best-fit-optimal design for the operators. In this study, a designed setup was employed to derive the applied forces by tractor operators on the control tools. The different muscle strengths including leg/foot strength, hand push/pull strength, and torque strength applied by both hands were measured. A comparison was made for the obtained values for different strengths by considering the effects of hand dominance. The obtained data were used to estimate the maximum allowed forces in these tools. In contrast to the previous studies, the minimum allowed actuating forces of the pedals were calculated using reasonable assumptions. These values could provide more comfort and less exhaustion for the tractor operators. The obtained ranges were benchmarked against corresponding recommended values in some standards (ISO, ISIRI, and ASABE family). The results revealed the unsuitability of evaluated standards for a proper design and the excessive overestimation of those recommended values (in some cases more than 3 times). In all of the design procedure, a suitable attention was paid to accommodate it with more than 90% of target population.Relevance to industryA prosperous industry which considers ergonomic factors in the design of agricultural machine workplace can overcome the disorders and generate more comfort. Evaluating more exact mechanical forces can result in a suitable design of workplace.  相似文献   
16.
《Ceramics International》2020,46(7):9218-9224
High-performance environment-friendly piezoelectric potassium sodium niobate (KNN)-based thin films have been emerged as promising lead-free candidates, while their substrate-dependent piezoelectricity faces the lack of high-quality information due to restraints in measurements. Although piezoresponse force microscopy (PFM) is a potential measuring tool, still its regular mode is not considered as a reliable characterization method for quantification. After combining machine-learning enabled analysis using PFM datasets, it is possible to measure piezoelectric properties quantitatively. Here we utilized advanced PFM technology empowered by machine learning to measure and compare the piezoelectricity of KNN based thin films on different substrates. The results provide a better understanding of the relationship between structures and piezoelectric properties of the thin films.  相似文献   
17.
The separation of iron oxide from banded hematite jasper(BHJ) assaying 47.8% Fe, 25.6% Si O2 and 2.30%Al2O3 using selective magnetic coating was studied. Characterization studies of the low grade ore indicate that besides hematite and goethite,jasper, a microcrystalline form of quartzite, is the major impurity associated with this ore. Beneficiation by conventional magnetic separation technique could yield a magnetic concentrate containing 60.8% Fe with 51% Fe recovery. In order to enhance the recovery of the iron oxide minerals, fine magnetite, colloidal magnetite and oleate colloidal magnetite were used as the coating material. When subjected to magnetic separation, the coated ore produces an iron concentrate containing 60.2% Fe with an enhanced recovery of56%. The AFM studies indicate that the coagulation of hematite particles with the oleate colloidal magnetite facilitates the higher recovery of iron particles from the low grade BHJ iron ore under appropriate conditions.  相似文献   
18.
The molecular design of short peptides to achieve a tailor-made functional architecture has attracted attention during the past decade but remains challenging as a result of insufficient understanding of the relationship between peptide sequence and assembled supramolecular structures. We report a hybrid-resolution model to computationally explore the sequence–structure relationship of self-assembly for tripeptides containing only phenylalanine and isoleucine. We found that all these tripeptides have a tendency to assemble into nanofibers composed of laterally associated filaments. Molecular arrangements within the assemblies are diverse and vary depending on the sequences. This structural diversity originates from (1) distinct conformations of peptide building blocks that lead to different surface geometries of the filaments and (2) unique sidechain arrangements at the filament interfaces for each sequence. Many conformations are available for tripeptides in solution, but only an extended β-strand and another resembling a right-handed turn are observed in assemblies. It was found that the sequence dependence of these conformations and the packing of resulting filaments are determined by multiple competing noncovalent forces, with hydrophobic interactions involving Phe being particularly important. The sequence pattern for each type of assembly conformation and packing has been identified. These results highlight the importance of the interplay between conformation, molecular packing, and sequences for determining detailed nanostructures of peptides and provide a detailed insight to support a more precise design of peptide-based nanomaterials.  相似文献   
19.
Central force optimization (CFO) is an efficient and powerful population-based intelligence algorithm for optimization problems. CFO is deterministic in nature, unlike the most widely used metaheuristics. CFO, however, is not completely free from the problems of premature convergence. One way to overcome local optimality is to utilize the multi-start strategy. By combining the respective advantages of CFO and the multi-start strategy, a multi-start central force optimization (MCFO) algorithm is proposed in this paper. The performance of the MCFO approach is evaluated on a comprehensive set of benchmark functions. The experimental results demonstrate that MCFO not only saves the computational cost, but also performs better than some state-of-the-art CFO algorithms. MCFO is also compared with representative evolutionary algorithms. The results show that MCFO is highly competitive, achieving promising performance.  相似文献   
20.
We used perceptual and oculomotor measures to understand the negative impacts of low (phantom array) and high (motion blur) duty cycles with a high‐speed, AR‐likehead‐mounted display prototype. We observed large intersubject variability for the detection of phantom array artifacts but a highly consistent and systematic effect on saccadic eye movement targeting during low duty cycle presentations. This adverse effect on saccade endpoints was also related to an increased error rate in a perceptual discrimination task, showing a direct effect of display duty cycle on the perceptual quality. For high duty cycles, the probability of detecting motion blur increased during head movements, and this effect was elevated at lower refresh rates. We did not find an impact of the temporal display characteristics on compensatory eye movements during head motion (e.g., VOR). Together, our results allow us to quantify the tradeoff of different negative spatiotemporal impacts of user movements and make subsequent recommendations for optimized temporal HMD parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号