首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5113篇
  免费   674篇
  国内免费   108篇
工业技术   5895篇
  2024年   20篇
  2023年   115篇
  2022年   199篇
  2021年   436篇
  2020年   168篇
  2019年   171篇
  2018年   163篇
  2017年   190篇
  2016年   228篇
  2015年   235篇
  2014年   323篇
  2013年   349篇
  2012年   339篇
  2011年   323篇
  2010年   278篇
  2009年   316篇
  2008年   348篇
  2007年   301篇
  2006年   227篇
  2005年   225篇
  2004年   167篇
  2003年   167篇
  2002年   113篇
  2001年   97篇
  2000年   51篇
  1999年   53篇
  1998年   39篇
  1997年   27篇
  1996年   34篇
  1995年   33篇
  1994年   24篇
  1993年   21篇
  1992年   16篇
  1991年   17篇
  1990年   18篇
  1989年   13篇
  1988年   7篇
  1987年   10篇
  1986年   12篇
  1985年   9篇
  1984年   6篇
  1983年   3篇
  1982年   1篇
  1980年   3篇
排序方式: 共有5895条查询结果,搜索用时 203 毫秒
31.
In cancer therapy, the application of (fractionated) harsh radiation treatment is state of the art for many types of tumors. However, ionizing radiation is a “double-edged sword”—it can kill the tumor but can also promote the selection of radioresistant tumor cell clones or even initiate carcinogenesis in the normal irradiated tissue. Individualized radiotherapy would reduce these risks and boost the treatment, but its development requires a deep understanding of DNA damage and repair processes and the corresponding control mechanisms. DNA double strand breaks (DSBs) and their repair play a critical role in the cellular response to radiation. In previous years, it has become apparent that, beyond genetic and epigenetic determinants, the structural aspects of damaged chromatin (i.e., not only of DSBs themselves but also of the whole damage-surrounding chromatin domains) form another layer of complex DSB regulation. In the present article, we summarize the application of super-resolution single molecule localization microscopy (SMLM) for investigations of these structural aspects with emphasis on the relationship between the nano-architecture of radiation-induced repair foci (IRIFs), represented here by γH2AX foci, and their chromatin environment. Using irradiated HeLa cell cultures as an example, we show repair-dependent rearrangements of damaged chromatin and analyze the architecture of γH2AX repair clusters according to topological similarities. Although HeLa cells are known to have highly aberrant genomes, the topological similarity of γH2AX was high, indicating a functional, presumptively genome type-independent relevance of structural aspects in DSB repair. Remarkably, nano-scaled chromatin rearrangements during repair depended both on the chromatin domain type and the treatment. Based on these results, we demonstrate how the nano-architecture and topology of IRIFs and chromatin can be determined, point to the methodological relevance of SMLM, and discuss the consequences of the observed phenomena for the DSB repair network regulation or, for instance, radiation treatment outcomes.  相似文献   
32.
There is an increasing interest in cationic polymers as important constituents of non-viral gene delivery vectors. In the present study, we developed a versatile synthetic route for the production of covalent polymeric conjugates consisting of water-soluble depolymerized chitosan (dCS; MW 6–9 kDa) and low molecular weight polyethylenimine (PEI; 2.5 kDa linear, 1.8 kDa branched). dCS-PEI derivatives were evaluated based on their physicochemical properties, including purity, covalent bonding, solubility in aqueous media, ability for DNA condensation, and colloidal stability of the resulting polyplexes. They were complexed with non-integrating DNA vectors coding for reporter genes by simple admixing and assessed in vitro using liver-derived HuH-7 cells for their transfection efficiency and cytotoxicity. Using a rational screening cascade, a lead compound was selected (dCS-Suc-LPEI-14) displaying the best balance of biocompatibility, cytotoxicity, and transfection efficiency. Scale-up and in vivo evaluation in wild-type mice allowed for a direct comparison with a commercially available non-viral delivery vector (in vivo-jetPEI). Hepatic expression of the reporter gene luciferase resulted in liver-specific bioluminescence, upon intrabiliary infusion of the chitosan-based polyplexes, which exceeded the signal of the in vivo jetPEI reference formulation by a factor of 10. We conclude that the novel chitosan-derivative dCS-Suc-LPEI-14 shows promise and potential as an efficient polymeric conjugate for non-viral in vivo gene therapy.  相似文献   
33.
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.  相似文献   
34.
35.
36.
With increasing temperature, nucleobases in DNA become increasingly damaged by hydrolysis of exocyclic amines. The most prominent damage includes the conversion of cytosine to uracil and adenine to hypoxanthine. These damages are mutagenic and put the integrity of the genome at risk if not repaired appropriately. Several archaea live at elevated temperatures and thus, are exposed to a higher risk of deamination. Earlier studies have shown that DNA polymerases of archaea have the property of sensing deaminated nucleobases in the DNA template and thereby stalling the DNA synthesis during DNA replication providing another layer of DNA damage recognition and repair. However, the structural basis of uracil and hypoxanthine sensing by archaeal B-family DNA polymerases is sparse. Here we report on three new crystal structures of the archaeal B-family DNA polymerase from Thermococcus kodakarensis (KOD) DNA polymerase in complex with primer and template strands that have extended single stranded DNA template 5’-overhangs. These overhangs contain either the canonical nucleobases as well as uracil or hypoxanthine, respectively, and provide unprecedented structural insights into their recognition by archaeal B-family DNA polymerases.  相似文献   
37.
Site-specific strategies for exchanging segments of dsDNA are important for DNA library construction and molecular tagging. Deoxyuridine (dU) excision is an approach for generating 3’ ssDNA overhangs in gene assembly and molecular cloning procedures. Unlike approaches that use a multi-base pair motif to specify a DNA cut site, dU excision requires only a dT→dU substitution. Consequently, excision sites can be embedded in biologically active DNA sequences by placing dU substitutions at non-perturbative positions. In this work, I describe a molecular tagging method that uses dU excision to exchange a segment of a dsDNA strand with a long synthetic oligonucleotide. The core workflow of this method, called deoxyUridine eXcision-tagging (dUX-tagging), is an efficient one-pot reaction: strategically positioned dU nucleotides are excised from dsDNA to generate a 3’ overhang so that additional sequence can be appended by annealing and ligating a tagging oligonucleotide. The tagged DNA is then processed by one of two procedures to fill the 5’ overhang and remove excess tagging oligo. To facilitate its widespread use, all dUX-tagging procedures exclusively use commercially available reagents. As a result, dUX-tagging is a concise and easily implemented approach for high-efficiency linear dsDNA tagging.  相似文献   
38.
HIV-1 RT is a necessary enzyme for retroviral replication, which is the main target for antiviral therapy against AIDS. Effective anti-HIV-1 RT drugs are divided into two groups; nucleoside inhibitors (NRTI) and non-nucleoside inhibitors (NNRTI), which inhibit DNA polymerase. In this study, new DNA aptamers were isolated as anti-HIV-1 RT inhibitors. The selected DNA aptamer (WT62) presented with high affinity and inhibition against wild-type (WT) HIV-1 RT and gave a KD value of 75.10±0.29 nM and an IC50 value of 84.81±8.54 nM. Moreover, WT62 decreased the DNA polymerase function of K103 N/Y181 C double mutant (KY) HIV-1 RT by around 80 %. Furthermore, the ITC results showed that this aptamer has small binding enthalpies with both WT and KY HIV-1 RTs through which the complex might form a hydrophobic interaction or noncovalent bonding. The NMR result also suggested that the WT62 aptamer could bind with both WT and KY mutant HIV-1 RTs at the connection domain.  相似文献   
39.
目的研究多表位DNA壳聚糖微球疫苗的体液免疫应答。方法制备多表位DNA壳聚糖微球疫苗pcD-NA3.1-HME-3C3d,经鼻腔免疫小鼠,蛋白检测微孔试剂盒检测小鼠特异性IgG抗体水平。结果经免疫的小鼠均能产生针对各表位的特异性IgG抗体,DNA壳聚糖微球疫苗的抗体水平明显高于DNA疫苗。结论壳聚糖微球疫苗投递系统可提高多表位DNA疫苗的免疫应答效果。  相似文献   
40.
通过光谱法研究聚甲基丙烯酰氧乙基二甲基丁烷基溴化铵(PMDB)和核酸的作用。结果表明通过共振光散射法用PMDB检测微量的DNA可靠、准确和简单。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号